Abstract Anodic olefin coupling reactions generate new bonds and ring skeletons through a net two electron process that reverses the polarity of a known, electron‐rich functional group. While much of the early work on the mechanism of these reactions focused on the initial oxidation and cyclization steps of the process, the second oxidation step also plays a central role in determining the success of the reaction. Evidence supporting this observation is presented, along with evidence that optimization of this second oxidation step is not enough to pull a poor cyclization to the desired product. Successful cyclization reactions require optimization of both processes.
more »
« less
Using a Combination of Electrochemical and Photoelectron Transfer Reactions to Gain New Insights into Oxidative Cyclization Reactions
Radical cation initiated cyclization reactions can be triggered by the one electron oxidation of an electron-rich olefin using either electrochemistry or visible light and a photoredox catalyst. In principle, the two methods can be used to give complimentary products with the electrolysis leading to products derived from a net two electron oxidation and the photoelectron transfer method being compatible with the formation of products from a redox neutral process. However, we are finding an increasing number of oxidative cyclization reactions that require the rapid removal of a second electron in order to form high yields of the desired product. In those cases, the electrochemical method can provide a superior approach to accessing the necessary two electron oxidation pathway. With that said, it is a combination of the two methods that provides the mechanistic insight needed to understand when a reaction has this requirement, and we are finding that the use of photoredox catalysis in combination with electrochemical methods is changing our understanding of even the most successful anodic cyclization reactions run to date.
more »
« less
- Award ID(s):
- 1764449
- PAR ID:
- 10303698
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 167
- Issue:
- 15
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- Article No. 155520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electrochemical oxidant regeneration is challenging in reactions that have a slow redox step because the steady‐state concentration of the reduced oxidant is low, causing difficulties in maintaining sufficient current or preventing potential spikes. This work shows that applying an understanding of the relationship between intermediate cation stability, oxidant strength, overpotential, and concentration on reaction kinetics delivers a method for electrochemical oxoammonium ion regeneration in hydride abstraction‐initiated cyclization reactions, resulting in the development of an electrocatalytic variant of a process that has a high oxidation transition state free energy. This approach should be applicable to expanding the scope of electrocatalysis to include additional slow redox processes.more » « less
-
Abstract Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non‐electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined.more » « less
-
Recent experimental studies have utilized AC electric fields and electrochemical reactions in multicomponent electrolyte solutions to control colloidal assembly. However, theoretical investigations have thus far been limited to binary electrolytes and have overlooked the impact of electrochemical reactions. In this study, we address these limitations by analyzing a system with multicomponent electrolytes, while also relaxing the assumption of ideally blocking electrodes to capture the effect of surface electrochemical reactions. Through a regular perturbation analysis in the low-applied-potential regime, we solve the Poisson–Nernst–Planck equations and obtain effective equations for electrical potential and ion concentrations. By employing a combination of numerical and analytical calculations, our analysis reveals a significant finding: electrochemical reactions alone can generate asymmetric rectified electric fields (AREFs), i.e., time-averaged, long-range electric fields, even when the diffusivities of the ionic species are equal. This finding expands our understanding beyond the conventional notion that AREFs arise solely from diffusivity contrast. Furthermore, we demonstrate that AREFs induced by electrochemical reactions can be stronger than those resulting from asymmetric diffusivities. Additionally, we report the emergence of asymmetric rectified concentration fields (ARCFs), i.e., time-averaged, long-range concentration fields, which supports the electrodiffusiophoresis mechanism of colloidal assembly observed in experiments. We also derive analytical expressions for AREFs and ARCFs, emphasizing the role of imbalances in ionic strength and charge density, respectively, as the driving forces behind their formation. The results presented in this article advance the field of colloidal assembly and also have implications for improved understanding of electrolyte transport in electrochemical devices.more » « less
-
Essential aspects of the chiral induced spin selectivity (CISS) effect and their implications for spin-controlled chemistry and asymmetric electrochemical reactions are described. The generation of oxygen through electrolysis is discussed as an example in which chirality-based spin-filtering and spin selection rules can be used to improve the reaction's efficiency and selectivity. Next the discussion shifts to illustrate how the spin selectivity of chiral molecules (CISS properties) allows one to use the electron spin as a chiral bias for inducing asymmetric reactions and promoting enantiospecific processes. Two enantioselective electrochemical reactions that have used polarized electron spins as a chiral reagent are described; enantioselective electroreduction to resolve an enantiomer from a racemic mixture and an oxidative electropolymerization to generate a chiral polymer from achiral monomers. A complementary approach that has used spin-polarized, but otherwise achiral, molecular films to enantiospecifically associate with one enantiomer from a racemic mixture is also discussed. Each of these reaction types use magnetized films to generate the spin polarized electrons and the enantiospecificity can be selected by choice of the magnetization direction, North pole versus South pole. Possible paths for future research in this area and its compatibility with existing methods based on chiral electrodes are discussed.more » « less
An official website of the United States government
