Graph convolutional networks (GCNs) are fundamental in various scientific applications, ranging from biomedical protein-protein interactions (PPI) to large-scale recommendation systems. An essential component for modeling graph structures in GCNs is sparse general matrix-matrix multiplication (SpGEMM). As the size of graph data continues to scale up, SpGEMMs are often conducted in an out-of-core fashion due to limited GPU memory space in resource-constrained systems. Albeit recent efforts that aim to alleviate the memory constraints of out-of-core SpGEMM through either GPU feature caching, hybrid CPU-GPU memory layout, or performing the computation in sparse format, current systems suffer from both high I/O latency and GPU under-utilization issues. In this paper, we first identify the problems of existing systems, where sparse format data alignment and memory allocation are the main performance bottlenecks, and propose AIRES, a novel algorithm-system co-design solution to accelerate out-of-core SpGEMM computation for GCNs. Specifically, from the algorithm angle, AIRES proposes to alleviate the data alignment issues on the block level for matrices in sparse formats and develops a tiling algorithm to facilitate row block-wise alignment. On the system level, AIRES employs a three-phase dynamic scheduling that features a dual-way data transfer strategy utilizing a tiered memory system: integrating GPU memory, GPU Direct Storage (GDS), and host memory to reduce I/O latency and improve throughput. Evaluations show that AIRES significantly outperforms the state-of-the-art methods, achieving up to 1.8× lower latency in real-world graph processing benchmarks.
more »
« less
Optimizing Data Locality and Termination Criterion for t-SNE
The t-Distributed Stochastic Neighbor Embedding (t-SNE) is known to be a successful method at visualizing high-dimensional data, making it very popular in the machine-learning and data analysis community, especially recently. However, there are two glaring unaddressed problems: (a) Existing GPU accelerated implementations of t-SNE do not account for the poor data locality present in the computation. This results in sparse matrix computations being a bottleneck during execution, especially for large data sets. (b) Another problem is the lack of an effective stopping criterion in the literature. In this paper, we report an improved GPU implementation that uses sparse matrix re-ordering to improve t-SNE's memory access pattern and a novel termination criterion that is better suited for visualization purposes. The proposed methods result in up to 4.63 x end-to-end speedup and provide a practical stopping metric, potentially preventing the algorithm from terminating prematurely or running for an excessive amount of iterations. These developments enable high-quality visualizations and accurate analyses of complex large data sets containing up to 10 million data points and requiring thousands of iterations for convergence.
more »
« less
- Award ID(s):
- 1822932
- PAR ID:
- 10303753
- Date Published:
- Journal Name:
- 2021 International Joint Conference on Neural Networks (IJCNN)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper proposes a scalable multilevel framework for the spectral embedding of large undirected graphs. The proposed method first computes much smaller yet sparse graphs while preserving the key spectral (structural) properties of the original graph, by exploiting a nearly-linear time spectral graph coarsening approach. Then, the resultant spectrally-coarsened graphs are leveraged for the development of much faster algorithms for multilevel spectral graph embedding (clustering) as well as visualization of large data sets. We conducted extensive experiments using a variety of large graphs and datasets and obtained very promising results. For instance, we are able to coarsen the "coPapersCiteseer" graph with 0.43 million nodes and 16 million edges into a much smaller graph with only 13K (32X fewer) nodes and 17K (950X fewer) edges in about 16 seconds; the spectrally-coarsened graphs allow us to achieve up to 1,100X speedup for multilevel spectral graph embedding (clustering) and up to 60X speedup for t-SNE visualization of large data sets.more » « less
-
Persistent homology (PH) matrix reduction is an important tool for data analytics in many application areas. Due to its highly irregular execution patterns in computation, it is challenging to gain high efficiency in parallel processing for increasingly large data sets. In this paper, we introduce HYPHA, a HYbrid Persistent Homology matrix reduction Accelerator, to make parallel processing highly efficient on both GPU and multicore. The essential foundation of our algorithm design and implementation is the separation of SIMT and MIMD parallelisms in PH matrix reduction computation. With such a separation, we are able to perform massive parallel scanning operations on GPU in a super-fast manner, which also collects rich information from an input boundary matrix for further parallel reduction operations on multicore with high efficiency. The HYPHA framework may provide a general purpose guidance to high performance computing on multiple hardware accelerators. To our best knowledge, HYPHA achieves the highest performance in PH matrix reduction execution. Our experiments show speedups of up to 116x against the standard PH algorithm. Compared to the state-of-the-art parallel PH software packages, such as PHAT and DIPHA, HYPHA outperforms their fastest PH matrix reduction algorithms by factor up to 2.3x.more » « less
-
Many scientific applications rely on sparse direct solvers for their numerical robustness. However, performance optimization for these solvers remains a challenging task, especially on GPUs. This is due to workloads of small dense matrices that are different in size. Matrix decompositions on such irregular workloads are rarely addressed on GPUs. This paper addresses irregular workloads of matrix computations on GPUs, and their application to accelerate sparse direct solvers. We design an interface for the basic matrix operations supporting problems of different sizes. The interface enables us to develop irrLU-GPU, an LU decomposition on matrices of different sizes. We demonstrate the impact of irrLU-GPU on sparse direct LU solvers using NVIDIA and AMD GPUs. Experimental results are shown for a sparse direct solver based on a multifrontal sparse LU decomposition applied to linear systems arising from the simulation, using finite element discretization on unstructured meshes, of a high-frequency indefinite Maxwell problem.more » « less
-
Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences. Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage. We create a general framework for training KG models using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our proposed sparse approach can be extended to accelerate other \revise{translation-based (such as TransC, TransM, etc.) and non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well.more » « less
An official website of the United States government

