skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring vertical displacement using laser lines and cameras
Measuring displacements in model tests typically involves contact-based sensors such as linear potentiometers, where contact between two moving parts occurs at the sensing point. The sensor's finite mass, the limited stiffness of the beams and the clamping mechanism, and the slippage and hinging of the sensor body could affect the object's response and lead to measurement errors. Also, the physical mounting rack required to hold these sensors often obstructs the view and makes significant areas unavailable for conducting some other essential investigations. The advancement in high-speed, high-resolution and reasonably priced rugged cameras makes it feasible to obtain better displacement measurements by image analysis. This paper introduces a non-contact method that works by video recording the projection of laser lines on a test object to measure static and dynamic vertical displacements. The technique produces a continuous settlement distribution along the laser line passing through multiple objects of interest. This paper presents the theory for converting laser line images to displacements. The new method's validity is demonstrated by comparing the results from other measurement techniques: hand measurements, linear potentiometers and three-dimensional stereophotogrammetry.  more » « less
Award ID(s):
1635307 1520581 2037883
PAR ID:
10304053
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
International Journal of Physical Modelling in Geotechnics
ISSN:
1346-213X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Measuring the displacement of a sloping ground using contact sensors such as potentiometers or LVDTs is problematic because the direction of movement is not known, and the contacting forces can either reinforce the soil or affect the measurements. This is especially true if there is a possibility that sensor attachments might move in liquefied soil. Others have used image-based methods to determine displacements but capturing clear photos of an underwater soil surface has proved challenging. This paper describes the development of a new wave suppressing window and camera setup for recording displacements of a submerged slope during earthquake-induced liquefaction. The bottom of the wave suppressing window was located beneath the water surface and acted like a glass bottom boat. Five GoPro cameras recorded movement of surface markers located on the slope. The videos were converted to displacement time histories using GEOPIV and the process described herein. The displacement time histories from the cameras is consistent with relative displacements calculated by double integration of accelerometer data and with residual displacements from before-and-after hand measurements of the surface markers. Results from this analysis have shown this method for tracking displacements is extremely accurate and can be used to better understand how liquefied slopes displace during strong shaking. The camera data in turn, lend credence to a proposed method to estimate relative displacement time histories from a hybrid of accelerometer measurements, Integrated Positive Relative Velocity (IPRV) and independently measured permanent displacements. 
    more » « less
  2. Robust and effective fruit detection and localization is essential for robotic harvesting systems. While extensive research efforts have been devoted to improving fruit detection, less emphasis has been placed on the fruit localization aspect, which is a crucial yet challenging task due to limited depth accuracy from existing sensor measurements in the natural orchard environment with variable lighting conditions and foliage/branch occlusions. In this paper, we present the system design and calibration of an Active LAser-Camera Scanner (ALACS), a novel perception module for robust and high-precision fruit localization. The hardware of the ALACS mainly consists of a red line laser, an RGB camera, and a linear motion slide, which are seamlessly integrated into an active scanning scheme where a dynamic-targeting laser-triangulation principle is employed. A high-fidelity extrinsic model is developed to pair the laser illumination and the RGB camera, enabling precise depth computation when the target is captured by both sensors. A random sample consensus-based robust calibration scheme is then designed to calibrate the model parameters based on collected data. Comprehensive evaluations are conducted to validate the system model and calibration scheme. The results show that the proposed calibration method can detect and remove data outliers to achieve robust parameter computation, and the calibrated ALACS system is able to achieve high-precision localization with the maximum depth measurement error being less than 4 mm at distance ranging from 0.6 to 1.2 m. 
    more » « less
  3. Digital image correlation (DIC) is an increasingly popular and effective non-contact method for measuring full-field displacements and strains of deformable bodies under load. Current DIC methods applied to bodies undergoing large displacements and rotations require a large measurement area for both the reference (i.e., undeformed) image and the deformed images. This can limit the resulting resolution of the displacement and strain fields. To address this issue, we propose a two-stage dynamic DIC method capable of measuring displacements and strains under material convection with high resolution. During the first stage, the reference image is assembled from smaller, high-resolution images of the undeformed object obtained using a spatially-fixed or moving frame. Following capture, each sub-image is rigidly translated and rotated into its appropriate place, thereby producing a full, high-resolution image of the reference body. In stage two, images of the loaded and deformed body, again obtained using a small camera frame with high resolution, are aligned with matching regions of the undeformed composite image using BRISK feature detection before performing DIC.We demonstrate the method on a contact problem whereby an elastomeric roller travels along a rigid surface. In doing so, we obtain fine resolution measurements of the state of strain of the region of the roller sidewall in contact with the substrate, even as new material convects through the region of interest. We present these measurements as a series of images and videos capturing strain evolution as the roller transitions from static loads to a fully dynamic steady-state, documenting the effectiveness of the method. 
    more » « less
  4. Fromme, Paul; Su, Zhongqing (Ed.)
    Stereovision systems can extract full-field three-dimensional (3D) displacements of structures by processing the images collected with two synchronized cameras. To obtain accurate measurements, the cameras must be calibrated to account for lens distortion (i.e., intrinsic parameters) and compute the cameras’ relative position and orientation (i.e., extrinsic parameters). Traditionally, calibration is performed by taking photos of a calibration object (e.g., a checkerboard) with the two cameras. Because the calibration object must be similar in size to the targeted structure, measurements on large-scale structures are highly impractical. This research proposes a multi-sensor board with three inertial measurement units and a laser distance meter to compute the extrinsic parameters of a stereovision system and streamline the calibration procedure. In this paper, the performances of the proposed sensor-based calibration are compared with the accuracy of the traditional image-based calibration procedure. Laboratory experiments show that cameras calibrated with the multi-sensor board measure displacements with 95% accuracy compared to displacements obtained from cameras calibrated with the traditional procedure. The results of this study indicate that the sensor-based approach can increase the applicability of 3D digital image correlation measurements to large-scale structures while reducing the time and complexity of the calibration. 
    more » « less
  5. Abstract The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces. 
    more » « less