skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrodynamic Tests on Physical Models of Scaled Wood Frame Shear-Wall Residential Buildings
An on-grade and an elevated specimen were tested and exposed to regular waves, in the Directional Wave Basin (DWB) at Oregon State University, with varying water depths and wave heights to simulate typical wave/surge conditions resulting from landfall hurricanes on low-lying barrier islands such as Hurricane Sandy that impacted the US East Coast in 2012 and Hurricane Ike that impacted the US Gulf Coast in 2008. Several instruments were used in the experiment, including nine wire resistance wave gauges located offshore, eight ultrasonic wave gauges located onshore near the specimens, four acoustic-doppler velocimeters, twelve pressure sensors, four load cells, and four triaxial accelerometers located on the specimens. The data (water depth, wave height, velocity, pressure, force, acceleration) gathered can help engineers and numerical modelers better understand the wave-structure interaction and help in improving design criteria of coastal light wood frame residential structures subjected to hurricane overland surge and wave loading.  more » « less
Award ID(s):
1661315
PAR ID:
10304232
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
Model_config_hydrodynamic_tests Sensor_info_hydrodynamic_tests Hydrodynamic_tests_without_structures hydrodynamic_tests_with_structures Relevant_documents_reports_hydrodynamic_tests Ohhwrl-Oregon
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, it is demonstrated that hurricane wind intensity, forward speed, pressure, and track play an important role on the generation and propagation of coastal storm surges. Hurricane Irma, which heavily impacted the entire Florida peninsula in 2017, is used to study the storm surge sensitivity to varying storm characteristics. Results show that the west coast experiences a negative surge due to offshore wind of the approaching storm, but the positive surge returns after the hurricane eye passes over a location and wind became onshore. In the west coast peak, surges are intensified by an increase in onshore wind intensity and forward speed. In the Florida Keys, peak surges are intensified by an increase in wind intensity, a decrease in forward speed and a decrease in pressure. In southeast and east Florida, peak surges are intensified by decrease in pressure, although overall surges are less significant as the water can slide along the coastline. In the recessed coastline of Georgia-Carolinas, maximum surge is elevated by an increase in onshore wind intensity. Shifting the track westward increases peak surges on the west coast, while shifting the track eastward increases peak surge on the east coast. The results demonstrate a new understanding about the sensitivity of surge to varying parametric conditions and the importance of considering changes in the coastline orientation in storm surge predictions. 
    more » « less
  2. Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir–Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model’s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges. 
    more » « less
  3. Dynamically-coupled SWAN and ADCIRC models have been applied to enhance the predictions of extreme waves and storm surges induced by hurricanes and sea level rise (SLR) in the Gulf of Mexico. The model performance was evaluated using Hurricane Michael, a Category-5 hurricane, as a case study. Modeled wave heights were compared to the observations. Results indicate that the dynamically-coupled SWAN-ADCIRC models substantially enhance the modeling accuracy. By comparing to the maximum observed 2.69 m of wave height near the hurricane landing site, the error is 0.04 m by the SWAN-ADCIRC models in comparison to the 0.39 m by the SWAN stand-alone simulation. Effects of sea level rise on hurricane wave heights were investigated under four SLR scenarios of 0.2m, 0.5m, 1m, and 1.5m. Results indicate that, as sea level rises, wave heights increase non-linearly in shallow waters near the hurricane landing site. At the wave observation station near the hurricane landing site, the ratio of the wave-height change to SLR increases to 117% and the ratio of the combined wave-surge change to SLR increases to 265%. Analysis indicates that this is due to the substantial percentage changes in water depth occurring in shallow water compared to deep water caused by SLR. 
    more » « less
  4. Storm surge and evacuation traffic under the observed track of Hurricane Michael (2018) showed clear accessibility and evacuation challenges for Panama City, Florida although the city was not hit directly. Since a possible Hurricane Michael track within National Hurricane Center (NHC)'s forecasted hurricane cone was Panama City, this paper tries to answer the following questions: What if Hurricane Michael hit Panama City directly? How would the special needs populations and their accessibility to Special Needs Shelters (SpNS) be impacted, and what could have been done to alleviate this impact? A previously validated storm surge model was used to predict storm surge inundations under this different hurricane track. Based on the impact of these coastal inundations, a GIS-based optimization methodology was developed to evaluate the accessibility and siting of special needs shelters. Results indicate that if Hurricane Michael had shifted to Panama City in 2018, most of the coastal region of Panama City would have been inundated, compelling residents to evacuate. The possible landfall of Michael in this simulation would also lead to a maximum storm surge of 5 to 6 m on the coast, which is above FEMA's 100-year flood elevation. In addition, the only evacuation route out of Panama City area, when the bridges with their access roads were flooded, was US 231. This would have been life-threatening since there is only one SpNS in the north of the city accessible by this roadway. The proposed analysis studies the accessibility of this SpNS shelter and provides a reasonable approach for SpNS shelter siting or repurposing regular shelters for this purpose based on the hypothesized travel time most likely to be experienced on roadway networks based on the impact of Hurricane Michael. Emergency plans can be updated by the results of this optimization model, which can locate additional sites or shelter locations while minimizing the travel costs and integrating the impact of storm surge modeling and transportation accessibility analysis. 
    more » « less
  5. Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies. 
    more » « less