skip to main content

Title: Millisecond exoplanet imaging: I. method and simulation results

One of the top priorities in observational astronomy is the direct imaging and characterization of extrasolar planets (exoplanets) and planetary systems. Direct images of rocky exoplanets are of particular interest in the search for life beyond the Earth, but they tend to be rather challenging targets since they are orders-of-magnitude dimmer than their host stars and are separated by small angular distances that are comparable to the classicalλ<#comment/>/Ddiffraction limit, even for the coming generation of 30 m class telescopes. Current and planned efforts for ground-based direct imaging of exoplanets combine high-order adaptive optics (AO) with a stellar coronagraph observing at wavelengths ranging from the visible to the mid-IR. The primary barrier to achieving high contrast with current direct imaging methods is quasi-static speckles, caused largely by non-common path aberrations (NCPAs) in the coronagraph optical train. Recent work has demonstrated that millisecond imaging, which effectively “freezes” the atmosphere’s turbulent phase screens, should allow the wavefront sensor (WFS) telemetry to be used as a probe of the optical system to measure NCPAs. Starting with a realistic model of a telescope with an AO system and a stellar coronagraph, this paper provides simulations of several closely related regression models that take advantage more » of millisecond telemetry from the WFS and coronagraph’s science camera. The simplest regression model, called the naïve estimator, does not treat the noise and other sources of information loss in the WFS. Despite its flaws, in one of the simulations presented herein, the naïve estimator provides a useful estimate of an NCPA of∼<#comment/>0.5radian RMS (≈<#comment/>λ<#comment/>/13), with an accuracy of∼<#comment/>0.06radian RMS in 1 min of simulated sky time on a magnitude 8 star. Thebias-corrected estimatorgeneralizes the regression model to account for the noise and information loss in the WFS. A simulation of the bias-corrected estimator with 4 min of sky time included an NCPA of∼<#comment/>0.05radian RMS (≈<#comment/>λ<#comment/>/130) and an extended exoplanet scene. The joint regression of the bias-corrected estimator simultaneously achieved an NCPA estimate with an accuracy of∼<#comment/>5×<#comment/>10−<#comment/>3radian RMS and an estimate of the exoplanet scene that was free of the self-subtraction artifacts typically associated with differential imaging. The5σ<#comment/>contrast achieved by imaging of the exoplanet scene was∼<#comment/>1.7×<#comment/>10−<#comment/>4at a distance of3λ<#comment/>/Dfrom the star and∼<#comment/>2.1×<#comment/>10−<#comment/>5at10λ<#comment/>/D. These contrast values are comparable to the very best on-sky results obtained from multi-wavelength observations that employ both angular differential imaging (ADI) and spectral differential imaging (SDI). This comparable performance is despite the fact that our simulations are quasi-monochromatic, which makes SDI impossible, nor do they have diurnal field rotation, which makes ADI impossible. The error covariance matrix of the joint regression shows substantial correlations in the exoplanet and NCPA estimation errors, indicating that exoplanet intensity and NCPA need to be estimated self-consistently to achieve high contrast.

« less
Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10304493
Journal Name:
Journal of the Optical Society of America A
Volume:
38
Issue:
10
Page Range or eLocation-ID:
Article No. 1541
ISSN:
1084-7529; JOAOD6
Publisher:
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. A lens performs an approximately one-to-one mapping from the object to the image plane. This mapping in the image plane is maintained within a depth of field (or referred to as depth of focus, if the object is at infinity). This necessitates refocusing of the lens when the images are separated by distances larger than the depth of field. Such refocusing mechanisms can increase the cost, complexity, and weight of imaging systems. Here we show that by judicious design of a multi-level diffractive lens (MDL) it is possible to drastically enhance the depth of focus by over 4 orders of magnitude. Using such a lens, we are able to maintain focus for objects that are separated by as large a distance as∼<#comment/>6min our experiments. Specifically, when illuminated by collimated light atλ<#comment/>=0.85µ<#comment/>m, the MDL produced a beam, which remained in focus from 5 to 1200 mm. The measured full width at half-maximum of the focused beam varied from 6.6 µm (5 mm away from the MDL) to 524 µm (1200 mm away from the MDL). Since the side lobes were well suppressed and the main lobe was close to the diffraction limit, imaging with a horizontalmore »× vertical field of view of40∘<#comment/>×<#comment/>30∘<#comment/>over the entire focal range was possible. This demonstration opens up a new direction for lens design, where by treating the phase in the focal plane as a free parameter, extreme-depth-of-focus imaging becomes possible.

    « less
  2. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043Gmore »mathvariant='normal'>Hz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

    « less
  3. We report a method to generate angularly polarized vector beams with a topological charge of one by rotating air holes to form two-dimensional photonic crystal (PC) cavities. The mode volume and resonance wavelength of these cavities are tuned from0.33(λ<#comment/>/n)3to12(λ<#comment/>/n)3and in a wide range of 400 nm, respectively, by controlling the range of fixed air holes near the center of the structure. As a benefit, the half-maximum divergence angles of the vector beam can be widely changed from 90° to∼<#comment/>60∘<#comment/>. By adjusting the shift direction of the air holes in the PC cavities, optical vector beams with different far-field morphology are obtained. The scheme provides not only an alternative method to generate optical vector beams, but also an effective strategy to control far-field morphology and polarizations, which holds promising applications such as optical microscopy and micro-manipulation.

  4. In terahertz (THz) photonics, there is an ongoing effort to develop thin, compact devices such as dielectric photonic crystal (PhC) slabs with desirable light–matter interactions. However, previous works in THz PhC slabs have been limited to rigid substrates with thicknesses∼<#comment/>100sof micrometers. Dielectric PhC slabs have been shown to possess in-plane modes that are excited by external radiation to produce sharp guided-mode resonances with minimal absorption for applications in sensors, optics, and lasers. Here we confirm the existence of guided resonances in a membrane-type THz PhC slab with subwavelength (λ<#comment/>0/6−<#comment/>λ<#comment/>0/12) thicknesses of flexible dielectric polyimide films. The transmittance of the guided resonances was measured for different structural parameters of the unit cell. Furthermore, we exploited the flexibility of the samples to modulate the guided modes for a bend angle ofθ<#comment/>≥<#comment/>5∘<#comment/>, confirmed experimentally by the suppression of these modes. The mechanical flexibility of the device allows for an additional degree of freedom in system design for high-speed communications, soft wearable photonics, and implantable medical devices.

  5. The design, fabrication, and characterization of low-loss ultra-compact bends in high-index (n=3.1atλ<#comment/>=1550nm) plasma-enhanced chemical vapor deposition silicon-rich silicon nitride (SRN) were demonstrated and utilized to realize efficient, small footprint thermo-optic phase shifter. Compact bends were structured into a folded waveguide geometry to form a rectangular spiral within an area of65×<#comment/>65µ<#comment/>m2, having a total active waveguide length of 1.2 mm. The device featured a phase-shifting efficiency of8mW/π<#comment/>and a 3 dB switching bandwidth of 15 KHz. We propose SRN as a promising thermo-optic platform that combines the properties of silicon and stoichiometric silicon nitride.