skip to main content


Title: Optomechanical synchronization across multi-octave frequency spans
Abstract

Experimental exploration of synchronization in scalable oscillator microsystems has unfolded a deeper understanding of networks, collective phenomena, and signal processing. Cavity optomechanical devices have played an important role in this scenario, with the perspective of bridging optical and radio frequencies through nonlinear classical and quantum synchronization concepts. In its simplest form, synchronization occurs when an oscillator is entrained by a signal with frequency nearby the oscillator’s tone, and becomes increasingly challenging as their frequency detuning increases. Here, we experimentally demonstrate entrainment of a silicon-nitride optomechanical oscillator driven up to the fourth harmonic of its 32 MHz fundamental frequency. Exploring this effect, we also experimentally demonstrate a purely optomechanical RF frequency divider, where we performed frequency division up to a 4:1 ratio, i.e., from 128 MHz to 32 MHz. Further developments could harness these effects towards frequency synthesizers, phase-sensitive amplification and nonlinear sensing.

 
more » « less
NSF-PAR ID:
10304639
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In contrast to the well-known phenomenon of frequency stabilization in a synchronized noisy nonlinear oscillator, little is known about its amplitude stability. In this paper, we investigate experimentally and theoretically the amplitude evolution and stability of a nonlinear nanomechanical self-sustained oscillator that is synchronized with an external harmonic drive. We show that the phase difference between the tones plays a critical role on the amplitude level, and we demonstrate that in the strongly nonlinear regime, its amplitude fluctuations are reduced considerably. These findings bring to light a new facet of the synchronization phenomenon, extending its range of applications beyond the field of clock-references and suggesting a new means to enhance oscillator amplitude stability. 
    more » « less
  2. Abstract

    Optical frequency combs, featuring evenly spaced spectral lines, have been extensively studied and applied to metrology, signal processing, and sensing. Recently, frequency comb generation has been also extended to MHz frequencies by harnessing nonlinearities in microelectromechanical membranes. However, the generation of frequency combs at radio frequencies (RF) has been less explored, together with their potential application in wireless technologies. In this work, we demonstrate an RF system able to wirelessly and passively generate frequency combs. This circuit, which we name quasi-harmonic tag (qHT), offers a battery-free solution for far-field ranging of unmanned vehicles (UVs) in GPS-denied settings, and it enables a strong immunity to multipath interference, providing better accuracy than other RF approaches to far-field ranging. Here, we discuss the principle of operation, design, implementation, and performance of qHTs used to remotely measure the azimuthal distance of a UV flying in an uncontrolled electromagnetic environment. We show that qHTs can wirelessly generate frequency combs with μWatt-levels of incident power by leveraging the nonlinear interaction between an RF parametric oscillator and a high quality factor piezoelectric microacoustic resonator. Our technique for frequency comb generation opens new avenues for a wide range of RF applications beyond ranging, including timing, computing and sensing.

     
    more » « less
  3. Interfacing electronics with optical fiber networks is key to the long-distance transfer of classical and quantum information. Piezo-optomechanical transducers enable such interfaces by using gigahertz-frequency acoustic vibrations as mediators for converting microwave photons to optical photons via the combination of optomechanical and piezoelectric interactions. However, despite successful demonstrations, efficient quantum transduction remains out of reach due to the challenges associated with hybrid material integration and increased loss from piezoelectric materials when operating in the quantum regime. Here, we demonstrate an alternative approach in which we actuate 5-GHz phonons in a conventional silicon-on-insulator platform. In our experiment, microwave photons resonantly drive a phononic crystal oscillator via the electrostatic force realized in a charge-biased narrow-gap capacitor. The mechanical vibrations are subsequently transferred via a phonon waveguide to an optomechanical cavity, where they transform into optical photons in the sideband of a pump laser field. Operating at room temperature and atmospheric pressure, we measure a microwave-to-optical photon conversion efficiency of 1.72±0.14×10−7in a 3.3 MHz bandwidth. Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon, which promise efficient high-bandwidth operation and integration with superconducting qubits. Additionally, the lack of need for piezoelectricity or other intrinsic nonlinearities makes our approach applicable to a wide range of materials for potential applications beyond quantum technologies.

     
    more » « less
  4. Abstract

    Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.

     
    more » « less
  5. Abstract

    Chipscale micro- and nano-optomechanical systems, hinging on the intangible radiation-pressure force, have shown their unique strength in sensing, signal transduction, and exploration of quantum physics with mechanical resonators. Optomechanical crystals, as one of the leading device platforms, enable simultaneous molding of the band structure of optical photons and microwave phonons with strong optomechanical coupling. Here, we demonstrate a new breed of optomechanical crystals in two-dimensional slab-on-substrate structures empowered by mechanical bound states in the continuum (BICs) at 8 GHz. We show symmetry-induced BIC emergence with optomechanical couplings up tog/2π≈ 2.5 MHz per unit cell, on par with low-dimensional optomechanical crystals. Our work paves the way towards exploration of photon-phonon interaction beyond suspended microcavities, which might lead to new applications of optomechanics from phonon sensing to quantum transduction.

     
    more » « less