skip to main content

This content will become publicly available on December 1, 2023

Title: Amplitude stabilization in a synchronized nonlinear nanomechanical oscillator
Abstract In contrast to the well-known phenomenon of frequency stabilization in a synchronized noisy nonlinear oscillator, little is known about its amplitude stability. In this paper, we investigate experimentally and theoretically the amplitude evolution and stability of a nonlinear nanomechanical self-sustained oscillator that is synchronized with an external harmonic drive. We show that the phase difference between the tones plays a critical role on the amplitude level, and we demonstrate that in the strongly nonlinear regime, its amplitude fluctuations are reduced considerably. These findings bring to light a new facet of the synchronization phenomenon, extending its range of applications beyond the field of clock-references and suggesting a new means to enhance oscillator amplitude stability.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Communications Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work we present a systematic review of novel and interesting behaviour we have observed in a simplified model of a MEMS oscillator. The model is third order and nonlinear, and we expressit as a single ODE for a displacement variable. We find that a single oscillator exhibits limitcycles whose amplitude is well approximated by perturbation methods. Two coupled identicaloscillators have in-phase and out-of-phase modes as well as more complicated motions.Bothof the simple modes are stable in some regions of the parameter space while the bifurcationstructure is quite complex in other regions. This structure is symmetric; the symmetry is brokenby the introduction of detuning between the two oscillators. Numerical integration of the fullsystem is used to check all bifurcation computations. Each individual oscillator is based on a MEMS structure which moves within a laser-driven interference pattern. As the structure vibrates, it changes the interference gap, causing the quantity of absorbed light to change, producing a feedback loop between the motion and the absorbed light and resulting in a limit cycle oscillation. A simplified model of this MEMS oscillator, omitting parametric feedback and structural damping, is investigated using Lindstedt's perturbation method. Conditions are derived on the parameters of the modelmore »for a limit cycle to exist. The original model of the MEMS oscillator consists of two equations: a second order ODE which describes the physical motion of a microbeam, and a first order ODE which describes the heat conduction due to the laser. Starting with these equations, we derive a single governing ODE which is of third order and which leads to the definition of a linear operator called the MEMS operator. The addition of nonlinear terms in the model is shown to produce limit cycle behavior. The differential equations of motion of the system of two coupled oscillators are numerically integrated for varying values of the coupling parameter. It is shown that the in-phase mode loses stability as the coupling parameter is reduced below a certain value, and is replaced by two new periodic motions which are born in a pitchfork bifurcation. Then as this parameter is further reduced, the form of the bifurcating periodic motions grows more complex, with yet additional bifurcations occurring. This sequence of bifurcations leads to a situation in which the only periodic motion is a stable out-of-phase mode. The complexity of the resulting sequence of bifurcations is illustrated through a series of diagrams based on numerical integration.« less
  2. El Niño–Southern Oscillation (ENSO) events tend to peak at the end of the calendar year, a phenomenon called ENSO phase locking. This phase locking is a fundamental ENSO property that is determined by its basic dynamics. The conceptual ENSO recharge oscillator (RO) model is adopted to examine the ENSO phase-locking behavior in terms of its peak time, strength of phase locking, and asymmetry between El Niño and La Niña events. The RO model reproduces the main phase-locking characteristics found in observations, and the results show that the phase locking of ENSO is mainly dominated by the seasonal modulation of ENSO growth/decay rate. In addition, the linear/nonlinear mechanism of ENSO phase preference/phase locking is investigated using RO model. The difference between the nonlinear phase-locking mechanism and linear phase-preference mechanism is largely smoothed out in the presence of noise forcing. Further, the impact on ENSO phase locking from annual cycle modulation of the growth/decay rate, stochastic forcing, nonlinearity, and linear frequency are examined in the RO model. The preferred month of ENSO peak time depends critically on the phase and strength of the seasonal modulation of the ENSO growth/decay rate. Furthermore, the strength of phase locking is mainly controlled by the linearmore »growth/decay rate, the amplitude of seasonal modulation of growth/decay rate, the amplitude of noise, the SST-dependent factor of multiplicative noise, and the linear frequency. The asymmetry of the sharpness of ENSO phase locking is induced by the asymmetric effect of state-dependent noise forcing in El Niño and La Niña events.

    « less
  3. The El Niño Southern Oscillation (ENSO) phenomenon, manifested by the great swings of large-scale sea surface temperature (SST) anomalies over the equatorial central to eastern Pacific oceans, is a major source of interannual global shifts in climate patterns and weather activities. ENSO’s SST anomalies exhibit remarkable spatiotemporal pattern diversity (STPD), with their spatial pattern diversity dominated by Central Pacific (CP) and Eastern Pacific (EP) El Niño events and their temporal diversity marked by different timescales and intermittency in these types of events. By affecting various Earth system components, ENSO and its STPD yield significant environmental, ecological, economic, and societal impacts over the globe. The basic dynamics of ENSO as a canonical oscillator generated by coupled ocean–atmosphere interactions in the tropical Pacific have been largely understood. A minimal simple conceptual model such as the recharge oscillator paradigm provides means for quantifying the linear and nonlinear seasonally modulated growth rate and frequency together with ENSO’s state-dependent noise forcing for understanding ENSO’s amplitude and periodicity, boreal winter-time phase locking, and warm/cold phase asymmetry. However, the dynamical mechanisms explaining the key features of ENSO STPD associated with CP and EP events remain to be better understood. This article provides a summary of the recentmore »active research on the dynamics of ENSO STPD together with discussions on challenges and outlooks for theoretical, diagnostic, and numerical modeling approaches to advance our understanding and modeling of ENSO, its STPD, and their broad impacts.« less
  4. Abstract

    Periodical cicadas exhibit an extraordinary capacity for self‐organizing spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the United States is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge numbers and briefly dominate their ecosystem. During the emergence, the 17‐year periodical cicada speciesMagicicada cassiniis found to form synchronized choruses, and we investigated their chorusing behavior from the standpoint of spatial synchrony.

    Cicada choruses were observed to form in trees, calling regularly every five seconds. In order to determine the limits of this self‐organizing behavior, we set out to quantify the spatial synchronization between cicada call choruses in different trees, and how and why this varies in space and time.

    We performed 20 simultaneous recordings in Clinton State Park, Kansas, in June 2015 (Brood IV), with a team of citizen‐science volunteers using consumer equipment (smartphones). We use a wavelet approach to show in detail how spatially synchronous, self‐organized chorusing varies across the forest.

    We show how conditions that increase the strength of audio interactions between cicadas also increase the spatial synchrony of their chorusing. Higher forest canopy light levels increase cicada activity, corresponding to faster and higher‐amplitude chorus cycling and tomore »greater synchrony of cycles across space. We implemented a relaxation‐oscillator‐ensemble model of interacting cicadas, finding that a tendency to call more often, driven by light levels, results in all these effects.

    Results demonstrate how the capacity to self‐organize in ecology depends sensitively on environmental conditions. Spatially correlated modulation of cycling rate by an external driver can also promote self‐organization of phase synchrony.

    « less
  5. In this work, the authors explore the influence of noise on the dynamics of coupled nonlinear oscillators. Numerical studies based on the Euler–Maruyama scheme and experimental studies with finite duration noise are undertaken to examine how the response can be moved from one response state to another by using noise addition to a harmonically forced system. In particular, jumps from a high amplitude state of each oscillator to a low amplitude state of each oscillator and the converse are demonstrated along with noise-influenced localizations. These events are found to occur in a region of multi-stability for the system, and the corresponding noise levels are reported. A method for recognizing how much noise is required to induce a change the system dynamics is developed by using the response basins of attraction. The findings of this work have implications for weakly coupled, nonlinear oscillator arrays and the manner in which noise can be used to influence energy localization and system dynamics in these systems.