skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: 1,25‐Dihydroxyvitamin D 3 and dietary vitamin D reduce inflammation in mice lacking intestinal epithelial cell Rab11a
Abstract A number of studies have examined the effects of 1,25‐dihydroxyvitamin D3(1,25(OH)2D3) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC‐specificRab11aa recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL‐6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell‐originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2D3or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC‐specificRab11aknockout mice (Rab11aΔIEC). 1,25(OH)2D3administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle‐injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF‐κB (p65) in the knockout intestinal epithelia, reduced tissue‐resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.  more » « less
Award ID(s):
1952823
PAR ID:
10305178
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Cellular Physiology
Volume:
236
Issue:
12
ISSN:
0021-9541
Page Range / eLocation ID:
p. 8148-8159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surfactant protein A (SP-A) plays an important role in innate immune response and host defense against various microorganisms through opsonization and complement activation. To investigate the role of SP-A in non-typeable Haemophilus influenzae (NTHi)-induced acute otitis media, this study used wild type C57BL/6 (WT) and SP-A knockout (KO) mice. We divided mice into an infection group in which the middle ear (ME) was injected with NTHi and a control group that received the same treatment using normal saline. Mice were sacrificed on d 1, 3, and 7 after treatment. Temporal bone samples were fixed for histological, cellular, and molecular analyses. Ear washing fluid (EWF) was collected for culture and analyses of pro-inflammatory cytokines and inflammatory cells. SP-A-mediated bacterial aggregation and killing and phagocytosis by macrophages were studied in vitro. SP-A expression was detected in the ME and Eustachian tube mucosa of WT mice but not KO mice. After infection, KO mice showed more severe inflammation evidenced by increased ME mucosal thickness and inflammatory cell infiltration and higher NF-κB activation compared to WT mice. The levels of IL-6 and IL-1β in the EWF of infected KO mice were higher compared to infected WT mice on d 1. Our studies demonstrated that SP-A mediated NTHi aggregation and killing and enhanced bacterial phagocytosis by macrophages in vitro and modulated inflammation of the ME in otitis media in vivo. 
    more » « less
  2. Harwood, Caroline S (Ed.)
    Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreasedrelative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. Wdemonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR−/−) Caco-2 intestinal epithelial cellsresponsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1β-induced inflammatorresponse of CFTR−/− Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroisupplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as wethe reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relativeabundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinicalstudies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serucompared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Takentogether, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airwayinflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate itproduces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic aairway inflammation for persons with CF. 
    more » « less
  3. null (Ed.)
    Paneth cells are the primary source of C-type lysozyme, a b-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn’s disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1/ hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD. 
    more » « less
  4. Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice. 
    more » « less
  5. null (Ed.)
    Intrinsic skin aging and photoaging, from exposure to ultraviolet (UV) radiation, are associated with altered regulation of genes associated with the extracellular matrix (ECM) and inflammation, as well as cellular damage from oxidative stress. The regulatory properties of 1-alpha, 25dihydroxyvitamin D3 (vitamin D) include endocrine, ECM regulation, cell differentiation, photoprotection, and anti-inflammation. The goal of this research was to identify the beneficial effects of vitamin D in preventing intrinsic skin aging and photoaging, through its direct effects as well as its effects on the ECM, associated heat shock proteins (HSP-47, and -70), cellular oxidative stress effects, and inflammatory cytokines [interleukin (IL)-1 and IL-8] in non-irradiated, UVA-radiated, UVB-radiated dermal fibroblasts. With regard to the ECM, vitamin D stimulated type I collagen and inhibited cellular elastase activity in non-irradiated fibroblasts; and stimulated type I collagen and HSP-47, and inhibited elastin expression and elastase activity in UVA-radiated dermal fibroblasts. With regard to cellular protection, vitamin D inhibited oxidative damage to DNA, RNA, and lipids in non-irradiated, UVA-radiated and UVB-radiated fibroblasts, and, in addition, increased cell viability of UVB-radiated cells. With regard to anti-inflammation, vitamin D inhibited expression of Il-1 and IL-8 in UVA-radiated fibroblasts, and stimulated HSP-70 in UVA-radiated and UVB-radiated fibroblasts. Overall, vitamin D is predominantly beneficial in preventing UVA-radiation induced photoaging through the differential regulation of the ECM, HSPs, and inflammatory cytokines, and protective effects on the cellular biomolecules. It is also beneficial in preventing UVB-radiation associated photoaging through the stimulation of cell viability and HSP-70, and the inhibition of cellular oxidative damage, and in preventing intrinsic aging through the stimulation of type I collagen and inhibition of cellular oxidative damage. 
    more » « less