skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Every positive integer is the order of an ordinary abelian variety over $${{\mathbb {F}}}_2$$
Abstract We show that for every integer$$m > 0$$ m > 0 , there is an ordinary abelian variety over $${{\mathbb {F}}}_2$$ F 2 that has exactlymrational points.  more » « less
Award ID(s):
2053473 1802161
PAR ID:
10305476
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Research in Number Theory
Volume:
7
Issue:
4
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + + a j , k x k = 0 for$$j=1,\dots ,m$$ j = 1 , , m with coefficients$$a_{j,i}\in \mathbb {F}_p$$ a j , i F p . Suppose that$$k\ge 3m$$ k 3 m , that$$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + + a j , k = 0 for$$j=1,\dots ,m$$ j = 1 , , m and that every$$m\times m$$ m × m minor of the$$m\times k$$ m × k matrix$$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ A F p n of size$$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ x 1 , , x k A are all distinct. Here,Cand$$\Gamma $$ Γ are constants only depending onp,mandksuch that$$\Gamma Γ < p . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ x 1 , , x k in the solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ x 1 , , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments. 
    more » « less
  2. Abstract We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subsetEof $$G_0$$ G 0 , and two finite subsets$$F_1,F_2$$ F 1 , F 2 of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of$$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for$$G=\mathbb {Z}^d$$ G = Z d for sufficiently large d. If one allows the group$$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. 
    more » « less
  3. Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ M C n into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ H N with signatures$$ \ell \le (n-1)/2 $$ ( n - 1 ) / 2 and$$ \ell '\le (N-1)/2,$$ ( N - 1 ) / 2 , respectively. Assuming that$$ N - n < n - 1,$$ N - n < n - 1 , we prove that if$$ \ell = \ell ',$$ = , thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ H N at every point of$$ M_{\ell },$$ M , or it maps a neighborhood of$$ M_{\ell } $$ M in$$ {\mathbb {C}}^n $$ C n into$$ {\mathbb {H}}_{\ell }^N.$$ H N . Furthermore, in the case where$$ \ell ' > \ell ,$$ > , we show that ifFis not CR transversal at$$0\in M_\ell ,$$ 0 M , then it must be transversally flat. The latter is best possible. 
    more » « less
  4. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less
  5. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less