Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.
more »
« less
Finding solutions with distinct variables to systems of linear equations over $$\mathbb {F}_p$$
Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ for$$j=1,\dots ,m$$ with coefficients$$a_{j,i}\in \mathbb {F}_p$$ . Suppose that$$k\ge 3m$$ , that$$a_{j,1}+\dots +a_{j,k}=0$$ for$$j=1,\dots ,m$$ and that every$$m\times m$$ minor of the$$m\times k$$ matrix$$(a_{j,i})_{j,i}$$ is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ of size$$|A|> C\cdot \Gamma ^n$$ contains a solution$$(x_1,\dots ,x_k)\in A^k$$ to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ are all distinct. Here,Cand$$\Gamma $$ are constants only depending onp,mandksuch that$$\Gamma . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ in the solution$$(x_1,\dots ,x_k)\in A^k$$ to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.
more »
« less
- Award ID(s):
- 2100157
- PAR ID:
- 10364571
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Mathematische Annalen
- Volume:
- 386
- Issue:
- 1-2
- ISSN:
- 0025-5831
- Page Range / eLocation ID:
- p. 1-33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the low moments$$\mathbb {E}[|A_N|^{2q}],\, 0 of secular coefficients$$A_N$$ of the critical non-Gaussian holomorphic multiplicative chaos, i.e. coefficients of$$z^N$$ in the power series expansion of$$\exp (\sum _{k=1}^\infty X_kz^k/\sqrt{k})$$ , where$$\{X_k\}_{k\geqslant 1}$$ are i.i.d. rotationally invariant unit variance complex random variables. Inspired by Harper’s remarkable result on random multiplicative functions, Soundararajan and Zaman recently showed that if each$$X_k$$ is standard complex Gaussian,$$A_N$$ features better-than-square-root cancellation:$$\mathbb {E}[|A_N|^2]=1$$ and$$\mathbb {E}[|A_N|^{2q}]\asymp (\log N)^{-q/2}$$ for fixed$$q\in (0,1)$$ as$$N\rightarrow \infty $$ . We show that this asymptotics holds universally if$$\mathbb {E}[e^{\gamma |X_k|}]<\infty $$ for some$$\gamma >2q$$ . As a consequence, we establish the universality for the tightness of the normalized secular coefficients$$A_N(\log (1+N))^{1/4}$$ , generalizing a result of Najnudel, Paquette, and Simm. Another corollary is the almost sure regularity of some critical non-Gaussian holomorphic chaos in appropriate Sobolev spaces. Moreover, we characterize the asymptotics of$$\mathbb {E}[|A_N|^{2q}]$$ for$$|X_k|$$ following a stretched exponential distribution with an arbitrary scale parameter, which exhibits a completely different behavior and underlying mechanism from the Gaussian universality regime. As a result, we unveil a double-layer phase transition around the critical case of exponential tails. Our proofs combine Harper’s robust approach with a careful analysis of the (possibly random) leading terms in the monomial decomposition of$$A_N$$ .more » « less
-
Abstract Let$$(h_I)$$ denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ , the set of dyadic intervals and$$h_I\otimes h_J$$ denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ,$$I,J\in \mathcal {D}$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ of$$h_I\otimes h_J$$ ,$$I,J\in \mathcal {D}$$ . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ or the Hardy spaces$$H^p[0,1]$$ ,$$1\le p < \infty $$ . We say that$$D:X(Y)\rightarrow X(Y)$$ is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , where$$d_{I,J}\in \mathbb {R}$$ , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ if$$|I|\le |J|$$ , and$$\mathcal {C} h_I\otimes h_J = 0$$ if$$|I| > |J|$$ , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ , there exist$$\lambda ,\mu \in \mathbb {R}$$ such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ i.e., for all$$\eta > 0$$ , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ . Additionally, if$$\mathcal {C}$$ is unbounded onX(Y), then$$\lambda = \mu $$ and then$${{\,\textrm{Id}\,}}$$ either factors throughDor$${{\,\textrm{Id}\,}}-D$$ .more » « less
-
Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .more » « less
-
Abstract Let$$\phi $$ be a positive map from the$$n\times n$$ matrices$$\mathcal {M}_n$$ to the$$m\times m$$ matrices$$\mathcal {M}_m$$ . It is known that$$\phi $$ is 2-positive if and only if for all$$K\in \mathcal {M}_n$$ and all strictly positive$$X\in \mathcal {M}_n$$ ,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ . This inequality is not generally true if$$\phi $$ is merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$ holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.more » « less
An official website of the United States government
