The suprachiasmatic nucleus (SCN) sets the phase of oscillation throughout the brain and body. Anatomical evidence reveals a portal system linking the SCN and the organum vasculosum of the lamina terminalis (OVLT), begging the question of the direction of blood flow and the nature of diffusible signals that flow in this specialized vasculature. Using a combination of anatomical and in vivo two-photon imaging approaches, we unequivocally show that blood flows unidirectionally from the SCN to the OVLT, that blood flow rate displays daily oscillations with a higher rate at night than in the day, and that circulating vasopressin can access portal vessels. These findings highlight a previously unknown central nervous system communication pathway, which, like that of the pituitary portal system, could allow neurosecretions to reach nearby target sites in OVLT, avoiding dilution in the systemic blood. In both of these brain portal pathways, the target sites relay signals broadly to both the brain and the rest of the body. 
                        more » 
                        « less   
                    
                            
                            Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain
                        
                    
    
            Abstract There is only one known portal system in the mammalian brain - that of the pituitary gland, first identified in 1933 by Popa and Fielding. Here we describe a second portal pathway in the mouse linking the capillary vessels of the brain’s clock suprachiasmatic nucleus (SCN) to those of the organum vasculosum of the lamina terminalis (OVLT), a circumventricular organ. The localized blood vessels of portal pathways enable small amounts of important secretions to reach their specialized targets in high concentrations without dilution in the general circulatory system. These brain clock portal vessels point to an entirely new route and targets for secreted SCN signals, and potentially restructures our understanding of brain communication pathways. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10305576
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain. The first was discovered almost a century ago and connects the median eminence to the anterior pituitary gland. The second was discovered a few years ago and links the suprachiasmatic nucleus to the organum vasculosum of the lamina terminalis, a sensory circumventricular organ (CVO). Sensory CVOs bear neuronal receptors for sensing signals in the fluid milieu. They line the surface of brain ventricles and bear fenestrated capillaries thereby lacking blood–brain barriers. It is not known whether the other sensory CVOs, namely the subfornical organ (SFO), and area postrema (AP) form portal neurovascular connections with nearby parenchymal tissue. To preserve the integrity of the vasculature of CVOs and their adjacent neuropil, we combined iDISCO clearing and light‐sheet microscopy to acquire volumetric images of blood vessels and traced the vasculature in two experiments. In the first, the whole brain vasculature was registered to the Allen Brain Atlas in order to identify the nuclei to which the SFO and AP are attached. In the second study, regionally specified immunolabeling was used to identify the attachment sites and vascular connections between the AP, and the SFO to their respective parenchymal attachment sites. There are venous portal pathways linking the capillary vessels of the SFO and the posterior septal nuclei, namely the septofimbrial nucleus and the triangular nucleus of the septum. Unlike the arrangement of portal vessels, the AP and the nucleus of the solitary tract share a common capillary bed. Taken together, the results reveal that all three sensory CVOs bear direct capillary connections to adjacent neuropil, providing a direct route for diffusible signals to travel from their source to their targets.more » « less
- 
            Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.more » « less
- 
            A map of central nervous system organization based on vascular networks or angiomes1 provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. Anatomical studies provided the first evidence of this vascular pathway in the brain. Specifically, Popa and Fielding identified a portal pathway linking the hypothalamus and the pituitary gland. Their anatomical work was based on hematoxylin and eosin-stained sections of the human brain. They also extensively discussed previous studies of this brain region. Based on the available literature and the appearance of India ink in the hypothalamus after it had been injected into the anterior pituitary, they vigorously argued that the direction of blood flow was from the pituitary gland to the hypothalamusmore » « less
- 
            The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-hour periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
