skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capillary connections between sensory circumventricular organs and adjacent parenchyma enable local volume transmission
Abstract Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain. The first was discovered almost a century ago and connects the median eminence to the anterior pituitary gland. The second was discovered a few years ago and links the suprachiasmatic nucleus to the organum vasculosum of the lamina terminalis, a sensory circumventricular organ (CVO). Sensory CVOs bear neuronal receptors for sensing signals in the fluid milieu. They line the surface of brain ventricles and bear fenestrated capillaries thereby lacking blood–brain barriers. It is not known whether the other sensory CVOs, namely the subfornical organ (SFO), and area postrema (AP) form portal neurovascular connections with nearby parenchymal tissue. To preserve the integrity of the vasculature of CVOs and their adjacent neuropil, we combined iDISCO clearing and light‐sheet microscopy to acquire volumetric images of blood vessels and traced the vasculature in two experiments. In the first, the whole brain vasculature was registered to the Allen Brain Atlas in order to identify the nuclei to which the SFO and AP are attached. In the second study, regionally specified immunolabeling was used to identify the attachment sites and vascular connections between the AP, and the SFO to their respective parenchymal attachment sites. There are venous portal pathways linking the capillary vessels of the SFO and the posterior septal nuclei, namely the septofimbrial nucleus and the triangular nucleus of the septum. Unlike the arrangement of portal vessels, the AP and the nucleus of the solitary tract share a common capillary bed. Taken together, the results reveal that all three sensory CVOs bear direct capillary connections to adjacent neuropil, providing a direct route for diffusible signals to travel from their source to their targets.  more » « less
Award ID(s):
1749500
PAR ID:
10565236
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Neuroendocrinology
ISSN:
0953-8194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The suprachiasmatic nucleus (SCN) sets the phase of oscillation throughout the brain and body. Anatomical evidence reveals a portal system linking the SCN and the organum vasculosum of the lamina terminalis (OVLT), begging the question of the direction of blood flow and the nature of diffusible signals that flow in this specialized vasculature. Using a combination of anatomical and in vivo two-photon imaging approaches, we unequivocally show that blood flows unidirectionally from the SCN to the OVLT, that blood flow rate displays daily oscillations with a higher rate at night than in the day, and that circulating vasopressin can access portal vessels. These findings highlight a previously unknown central nervous system communication pathway, which, like that of the pituitary portal system, could allow neurosecretions to reach nearby target sites in OVLT, avoiding dilution in the systemic blood. In both of these brain portal pathways, the target sites relay signals broadly to both the brain and the rest of the body. 
    more » « less
  2. Abstract There is only one known portal system in the mammalian brain - that of the pituitary gland, first identified in 1933 by Popa and Fielding. Here we describe a second portal pathway in the mouse linking the capillary vessels of the brain’s clock suprachiasmatic nucleus (SCN) to those of the organum vasculosum of the lamina terminalis (OVLT), a circumventricular organ. The localized blood vessels of portal pathways enable small amounts of important secretions to reach their specialized targets in high concentrations without dilution in the general circulatory system. These brain clock portal vessels point to an entirely new route and targets for secreted SCN signals, and potentially restructures our understanding of brain communication pathways. 
    more » « less
  3. A map of central nervous system organization based on vascular networks or angiomes1 provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. Anatomical studies provided the first evidence of this vascular pathway in the brain. Specifically, Popa and Fielding identified a portal pathway linking the hypothalamus and the pituitary gland. Their anatomical work was based on hematoxylin and eosin-stained sections of the human brain. They also extensively discussed previous studies of this brain region. Based on the available literature and the appearance of India ink in the hypothalamus after it had been injected into the anterior pituitary, they vigorously argued that the direction of blood flow was from the pituitary gland to the hypothalamus 
    more » « less
  4. ABSTRACT Visual learning is vital to the behavioral ecology of the Western honey bee (Apis mellifera). Honey bee workers forage for floral resources, a behavior that requires the learning and long-term memory of visual landmarks, but how these memories are mapped to the brain remains poorly understood. To address this gap in our understanding, we collected bees that successfully learned visual associations in a conditioned aversion paradigm and compared gene expression correlates of memory formation in the mushroom bodies, a higher-order sensory integration center classically thought to contribute to learning, as well as the optic lobes, the primary visual neuropil responsible for sensory transduction of visual information. We quantified expression of CREB and CaMKII, two classical genetic markers of learning, and fen-1, a gene specifically associated with punishment learning in vertebrates. As expected, we found substantial involvement of the mushroom bodies for all three markers but additionally report the involvement of the optic lobes across a similar time course. Our findings imply the molecular involvement of a sensory neuropil during visual associative learning parallel to a higher-order brain region, furthering our understanding of how a tiny brain processes environmental signals. 
    more » « less
  5. Autoregulation and neurovascular coupling are key mechanisms that modulate myogenic tone (MT) in vessels to regulate cerebral blood flow (CBF) during resting state and periods of increased neural activity, respectively. To determine relative contributions of distinct vascular zones across different cortical depths in CBF regulation, we developed a simplified yet detailed and computationally efficient model of the mouse cerebrovasculature. The model integrates multiple simplifications and generalizations regarding vascular morphology, the hierarchical organization of mural cells, and potentiation/inhibition of MT in vessels. Our analysis showed that autoregulation is the result of the synergy between these factors, but achieving an optimal balance across all cortical depths and throughout the autoregulation range is a complex task. This complexity explains the non-uniformity observed experimentally in capillary blood flow at different cortical depths. In silico simulations of cerebral autoregulation support the idea that the cerebral vasculature does not maintain a plateau of blood flow throughout the autoregulatory range and consists of both flat and sloped phases. We learned that small-diameter vessels with large contractility, such as penetrating arterioles and precapillary arterioles, have major control over intravascular pressure at the entry points of capillaries and play a significant role in CBF regulation. However, temporal alterations in capillary diameter contribute moderately to cerebral autoregulation and minimally to functional hyperemia. In addition, hemodynamic analysis shows that while hemodynamics within capillaries remain relatively stable across all cortical depths throughout the entire autoregulation range, significant variability in hemodynamics can be observed within the first few branch orders of precapillary arterioles or transitional zone vessels. The computationally efficient cerebrovasculature model, proposed in this study, provides a novel framework for analyzing dynamics of the CBF regulation where hemodynamic and vasodynamic interactions are the foundation on which more sophisticated models can be developed. 
    more » « less