skip to main content


Title: Parallel trajectories in the discovery of the SCN‐OVLT and pituitary portal pathways: Legacies of Geoffrey Harris
A map of central nervous system organization based on vascular networks or angiomes1 provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. Anatomical studies provided the first evidence of this vascular pathway in the brain. Specifically, Popa and Fielding identified a portal pathway linking the hypothalamus and the pituitary gland. Their anatomical work was based on hematoxylin and eosin-stained sections of the human brain. They also extensively discussed previous studies of this brain region. Based on the available literature and the appearance of India ink in the hypothalamus after it had been injected into the anterior pituitary, they vigorously argued that the direction of blood flow was from the pituitary gland to the hypothalamus  more » « less
Award ID(s):
1749500
NSF-PAR ID:
10409082
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Neuroendocrinology
ISSN:
0953-8194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is only one known portal system in the mammalian brain - that of the pituitary gland, first identified in 1933 by Popa and Fielding. Here we describe a second portal pathway in the mouse linking the capillary vessels of the brain’s clock suprachiasmatic nucleus (SCN) to those of the organum vasculosum of the lamina terminalis (OVLT), a circumventricular organ. The localized blood vessels of portal pathways enable small amounts of important secretions to reach their specialized targets in high concentrations without dilution in the general circulatory system. These brain clock portal vessels point to an entirely new route and targets for secreted SCN signals, and potentially restructures our understanding of brain communication pathways.

     
    more » « less
  2. Transplant studies demonstrate unequivocally that the suprachiasmatic nucleus (SCN) produces diffusible signals that can sustain circadian locomotor rhythms. There is a vascular portal pathway between the SCN and the organum vasculosum of the lamina terminalis in mouse brain. Portal pathways enable low concentrations of neurosecretions to reach specialized local targets without dilution in the systemic circulation. To explore the SCN vasculature and the capillary vessels whereby SCN neurosecretions might reach portal vessels, we investigated the blood vessels (BVs) of the core and shell SCN. The arterial supply of the SCN differs among animals, and in some animals, there are differences between the 2 sides. The rostral SCN is supplied by branches from either the superior hypophyseal artery (SHpA) or the anterior cerebral artery or the anterior communicating artery. The caudal SCN is consistently supplied by the SHpA. The rostral SCN is drained by the preoptic vein, while the caudal is drained by the basal vein, with variations in laterality of draining vessels. In addition, several key features of the core and shell SCN regions differ: Median BV diameter is significantly smaller in the shell than the core based on confocal image measurements, and a similar trend occurs in iDISCO-cleared tissue. In the cleared tissue, whole BV length density and surface area density are significantly greater in the shell than the core. Finally, capillary length density is also greater in the shell than the core. The results suggest three hypotheses: First, the distinct arterial and venous systems of the rostral and caudal SCN may contribute to the in vivo variations of metabolic and neural activities observed in SCN networks. Second, the dense capillaries of the SCN shell are well positioned to transport blood-borne signals. Finally, variations in SCN vascular supply and drainage may contribute to inter-animal differences.

     
    more » « less
  3. Investigation of the negative impacts of stress on reproduction has largely centered around the effects of the adrenal steroid hormone, corticosterone (CORT), and its influence on a system of tissues vital for reproduction—the hypothalamus of the brain, the pituitary gland, and the gonads (the HPG axis). Research on the action of CORT on the HPG axis has predominated the stress and reproductive biology literature, potentially overshadowing other influential mediators. To gain a more complete understanding of how elevated CORT affects transcriptomic activity of the HPG axis, we experimentally examined its role in male and female rock doves ( Columba livia ). We exogenously administrated CORT to mimic circulating levels during the stress response, specifically 30 min of restraint stress, an experimental paradigm known to increase circulating CORT in vertebrates. We examined all changes in transcription within each level of the HPG axis as compared to both restraint-stressed birds and vehicle-injected controls. We also investigated the differential transcriptomic response to CORT and restraint-stress in each sex. We report causal and sex-specific effects of CORT on the HPG transcriptomic stress response. Restraint stress caused 1567 genes to uniquely differentially express while elevated circulating CORT was responsible for the differential expression of 304 genes. Only 108 genes in females and 8 in males differentially expressed in subjects that underwent restraint stress and those who were given exogenous CORT. In response to elevated CORT and restraint-stress, both sexes shared the differential expression of 5 genes, KCNJ5 , CISH , PTGER3 , CEBPD , and ZBTB16 , all located in the pituitary. The known functions of these genes suggest potential influence of elevated CORT on immune function and prolactin synthesis. Gene expression unique to each sex indicated that elevated CORT affected more gene transcription in females than males (78 genes versus 3 genes, respectively). To our knowledge, this is the first study to isolate the role of CORT in HPG genomic transcription during a stress response. We present an extensive and openly accessible view of the role corticosterone in the HPG transcriptomic stress response. Because the HPG system is well conserved across vertebrates, these data have the potential to inspire new therapeutic strategies for reproductive dysregulation in multiple vertebrate systems, including our own. 
    more » « less
  4. Abstract

    Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area‐anterior hypothalamus (POA‐AH) of nest‐holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal‐acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin‐expressing somata and in the distribution of fibers, especially in brainstem vocal‐acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA‐AH neurons express galanin and the nonapeptides arginine‐vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph‐specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA‐AH neurons that coexpress galanin and the neurotransmitter γ‐aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide‐expressing populations; and play a role in male‐specific behaviors.

     
    more » « less
  5. Insufficient thyroid hormone (TH) during development results in permanent neurological deficits. These deficits are the result of neuroanatomical defects that include smaller brain, fewer parvalbumin neurons, and hypomyelination. Interestingly, insufficient insulin-like growth factor 1 (Igf-1) during development results in similar neuroanatomical defects to those reported for developmental hypothyroidism. Thyroid hormone is known to indirectly influence serum Igf-1 levels through its regulation of pituitary growth hormone (GH) secretion which stimulates hepatic Igf-1 production. Our lab and others have observed decreases of local brain-derived Igf-1 in the developing hypothyroid mouse brain. This observation suggests that deficits associated with low TH during development may be the result of altered brain-derived Igf-1. Considering this, we sought to determine whether ectopically expressing Igf-1 in the developing brain could rescue neuroanatomical defects associated with TH. To accomplish this, the tet-off transgenic system was used where mice harboring tetracycline transactivator protein driven by the human GFAP promoter (tTA-GFAP) were crossed with mice containing the human Igf-1cDNA under the control the TET response element (Igf1-pTRE) transgene. Double transgenic (dTg) offspring carrying both the tTA-GFAP and Igf1-TRE genes overexpress Igf-1 specifically in brain astrocytes. The timed-pregnant mice were treated with thyroid gland inhibitors from embryonic day 14.5 (E14.5) until postnatal day 14 (P14) to induce a hypothyroid state in pups. At P14, pups were weighed and sacrificed, trunk blood was collected, and brains were dissected, weighed, and immediately frozen. Hippocampal structure, known be disrupted by developmental hypothyroidism, was assessed by fluorescent imaging using DAPI staining. Our initial results indicate that ectopic expression of Igf-1 in the brain (dTg mice) rescues hypothyroidism-induced reductions in brain weight without increasing body weight. In addition, the ectopic expression of Igf-1 restored hypothyroidism-induced perturbations in dentate gyrus size. Ongoing studies are using quantitative real-time PCR on micro-dissected cortical and hippocampal samples, to quantify myelin associated glycoprotein and parvalbumin mRNAs. Taken together, our findings support the idea that ectopic brain-derived Igf-1 rescues neuroanatomical defects caused by hypothyroidism and implicates TH in the regulation of brain Igf-1. 
    more » « less