skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in selection pressure can facilitate hybridization during biological invasion in a Cuban lizard
Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.  more » « less
Award ID(s):
1827647 1927194
PAR ID:
10305923
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
42
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2108638118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced‐representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non‐native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non‐native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non‐native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non‐native genetic material even in the absence of ongoing immigration, indicating that selection favouring non‐native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non‐native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long‐term survival of native populations otherwise unable to adapt to anthropogenically mediated global change. 
    more » « less
  2. ABSTRACT Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system using genome‐wide SNPs and environmental data to examine invasion history and identify genotype–environment associations indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid adaptation within invasive populations. We demonstrate strong genetic structuring among native regions which aligns with life history expectations, identifying southern New England as the source of invasive populations. Then, we identify putatively thermally adaptive loci across the native range but find no evidence of allele frequency shifts in invasive populations that suggest rapid adaptation to new environments. Our results indicate that while these loci may underpin local thermal adaptation in their native range, selection is relaxed in invasive populations, perhaps due to complex polygenic architecture underlying thermal traits and/or standing capacity for phenotypic plasticity. Given the prolific invasion ofUrosalpinx, our study suggests population success in new environments is influenced by factors other than selection on standing genetic variation that underlies local adaptation in the native range and highlights the importance of considering population history and environmental selection pressures when evaluating adaptive capacity. 
    more » « less
  3. Abstract Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within‐ and among‐species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippianaandP. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates thanP. hippiana. In contrast, hybrid performance relative toP. pulcherrimavaried with population and climate, with the hybrid maintaining relatively stable growth rates while populations ofP. pulcherrimashrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context‐dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions forP. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long‐lived taxa are lagging behind their demographic trajectories, such that the currently less commonP. hippianacould become the most abundant of thePotentillataxa as this region continues to warm and dry. 
    more » « less
  4. Abstract We studied hybridization between the Black-crested and Tufted titmouse across two geographically distinct transects that differ in the timing of secondary contact by hundreds to thousands of years. We found that hybridization patterns correspond to localized hybrid swarms and that the titmouse hybrid zone is likely slowly expanding over time, a product of short post-natal dispersal distances coupled with weak or absent selection against admixture. We show the southern part of the hybrid zone located in Texas is four times wider than the northern region of hybridization in Oklahoma, which is likely due to geographic differences in hybrid zone age. Despite differences in width, most individuals in both transects are advanced-generation hybrids and backcrosses, suggesting geographically consistent hybridization dynamics. We documented a strong correlation between genotypes and plumage index, suggesting that hybridization has not yet resulted in the decoupling of plumage and genome-wide ancestry as observed in some other avian hybrid zones. Although our results suggest the ongoing expansion of the hybrid zone, the rate of expansion appears to be slow, on the scale of tens of meters a year, and it will likely take hundreds of thousands to millions of years before homogenization of the parental populations. While we did not find support for partial reproductive isolation in the hybrid zone itself, there is the possibility that ecological or sexual selection limits introgression into allopatric regions. Broadly, the results of our study highlight the value of multiple, geographically distant, transects across a hybrid zone for assessing the evolutionary dynamics of hybridizing lineages. 
    more » « less
  5. Abstract Hybridization between species affects biodiversity and population sustainability in numerous ways, many of which depend on the fitness of the hybrid relative to the parental species. Hybrids can exhibit fitter phenotypes compared to the parental lineages, and this ‘hybrid vigour’ can then lead to the extinction of one or both parental lines.In this study, we analysed the relationship between water loss and gas exchange to compare physiological performance among three tiger salamander genotypes—the native California tiger salamander (CTS), the invasive barred tiger salamanders (BTS) and CTS × BTS hybrids across multiple temperatures (13.5°C, 20.5°C and 23.5°C). We developed a new index of performance, the water‐gas exchange ratio (WGER), which we define as the ratio of gas exchange to evaporative water loss (μLVO2/μL H2O). The ratio describes the ability of an organism to support energetically costly activities with high levels of gas exchange while simultaneously limiting water loss to lower desiccation risk. We used flow through respirometry to measure the thermal sensitivity of metabolic rate and resistance to water loss of each salamander genotype to compare indices of physiological performance.We found that temperature had a significant effect on metabolic rate and resistance to water loss, with both traits increasing as temperatures warmed. Across genotypes, we found that hybrids have a higher WGER than the native CTS, owing to a higher metabolic rate despite having a lower resistance to water loss.These results provide a greater insight into the physiological mechanisms driving hybrid vigour and offer a potential explanation for the rapid spread of salamander hybrids. More broadly, our introduction of the WGER may allow for species‐ or lineage‐wide comparisons of physiological performance across changing environmental conditions, highlighting the insight that can be gleaned from multitrait analysis of organism performance. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less