skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher connectivity of tropicalizations
Abstract We show that the tropicalization of an irreducibled-dimensional variety over a field of characteristic 0 is$$(d-\ell )$$ ( d - ) -connected through codimension one, where$$\ell $$ is the dimension of the lineality space of the tropicalization. From this we obtain a higher connectivity result for skeleta of rational polytopes. We also prove a tropical analogue of the Bertini Theorem: the intersection of the tropicalization of an irreducible variety with a generic hyperplane is again the tropicalization of an irreducible variety.  more » « less
Award ID(s):
1855726
PAR ID:
10305998
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mathematische Annalen
Volume:
384
Issue:
1-2
ISSN:
0025-5831
Page Range / eLocation ID:
p. 1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ M C n into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ H N with signatures$$ \ell \le (n-1)/2 $$ ( n - 1 ) / 2 and$$ \ell '\le (N-1)/2,$$ ( N - 1 ) / 2 , respectively. Assuming that$$ N - n < n - 1,$$ N - n < n - 1 , we prove that if$$ \ell = \ell ',$$ = , thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ H N at every point of$$ M_{\ell },$$ M , or it maps a neighborhood of$$ M_{\ell } $$ M in$$ {\mathbb {C}}^n $$ C n into$$ {\mathbb {H}}_{\ell }^N.$$ H N . Furthermore, in the case where$$ \ell ' > \ell ,$$ > , we show that ifFis not CR transversal at$$0\in M_\ell ,$$ 0 M , then it must be transversally flat. The latter is best possible. 
    more » « less
  2. Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ Σ = ( Σ 1 , , Σ ) is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ τ = ( τ 1 , , τ ) is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ L p : = L p that vanish to order at least$$\tau _jp$$ τ j p along$$\Sigma _j$$ Σ j ,$$1\le j\le \ell $$ 1 j . If$$Y\subset X$$ Y X is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ H 0 0 ( X | Y , L p ) of holomorphic sections of$$L^p|_Y$$ L p | Y that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) . Assuming that the triplet$$(L,\Sigma ,\tau )$$ ( L , Σ , τ ) is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ dim H 0 0 ( X , L p ) p n , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ dim H 0 0 ( X | Y , L p ) p m . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) as$$p\rightarrow \infty $$ p
    more » « less
  3. Abstract The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$ + - , dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$ m , transverse momentum$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) , and$$\varphi ^{*}_{\eta }$$ φ η . The$$\varphi ^{*}_{\eta }$$ φ η observable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) , is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$ Te V are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$ m ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$ fb - 1 of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$ Te V . Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation. 
    more » « less
  4. Abstract We show that the wreath Macdonald polynomials for$$\mathbb {Z}/\ell \mathbb {Z}\wr \Sigma _n$$ Z / Z Σ n , when naturally viewed as elements in the vertex representation of the quantum toroidal algebra$$U_{\mathfrak {q},\mathfrak {d}}(\ddot{\mathfrak {sl}}_\ell )$$ U q , d ( sl ¨ ) , diagonalize its horizontal Heisenberg subalgebra. Our proof makes heavy use of shuffle algebra methods, and we also obtain a new proof of existence of wreath Macdonald polynomials. 
    more » « less
  5. Abstract BackgroundGiven a sequencing read, the broad goal of read mapping is to find the location(s) in the reference genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, however, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read above a certain score threshold. ResultsIn this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in$$\mathcal {O} (|t| + |p| + \ell ^2)$$ O ( | t | + | p | + 2 ) time and$$\mathcal {O} (\ell \log \ell )$$ O ( log ) space, where |t| is the number of$$k$$ k -mers inside the sketch of the reference, |p| is the number of$$k$$ k -mers inside the read’s sketch and$$\ell$$ is the number of times that$$k$$ k -mers from the pattern sketch occur in the sketch of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromosome Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of precision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2. 
    more » « less