Abstract The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$ , dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$ , transverse momentum$$p_{\textrm{T}} (\ell \ell )$$ , and$$\varphi ^{*}_{\eta }$$ . The$$\varphi ^{*}_{\eta }$$ observable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$ , is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$ region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$ are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$ of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$ . Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
more »
« less
This content will become publicly available on December 1, 2025
ESKEMAP: exact sketch-based read mapping
Abstract BackgroundGiven a sequencing read, the broad goal of read mapping is to find the location(s) in the reference genome that have a “similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment score and read mappers were viewed as heuristic solutions to this well-defined problem. For sketch-based mappers, however, there has not been a problem formulation to capture what problem an exact sketch-based mapping algorithm should solve. Moreover, there is no sketch-based method that can find all possible mapping positions for a read above a certain score threshold. ResultsIn this paper, we formulate the problem of read mapping at the level of sequence sketches. We give an exact dynamic programming algorithm that finds all hits above a given similarity threshold. It runs in$$\mathcal {O} (|t| + |p| + \ell ^2)$$ time and$$\mathcal {O} (\ell \log \ell )$$ space, where |t| is the number of$$k$$ -mers inside the sketch of the reference, |p| is the number of$$k$$ -mers inside the read’s sketch and$$\ell$$ is the number of times that$$k$$ -mers from the pattern sketch occur in the sketch of the text. We evaluate our algorithm’s performance in mapping long reads to the T2T assembly of human chromosome Y, where ampliconic regions make it desirable to find all good mapping positions. For an equivalent level of precision as minimap2, the recall of our algorithm is 0.88, compared to only 0.76 of minimap2.
more »
« less
- Award ID(s):
- 2138585
- PAR ID:
- 10519792
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Algorithms for Molecular Biology
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1748-7188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ with signatures$$ \ell \le (n-1)/2 $$ and$$ \ell '\le (N-1)/2,$$ respectively. Assuming that$$ N - n < n - 1,$$ we prove that if$$ \ell = \ell ',$$ thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ at every point of$$ M_{\ell },$$ or it maps a neighborhood of$$ M_{\ell } $$ in$$ {\mathbb {C}}^n $$ into$$ {\mathbb {H}}_{\ell }^N.$$ Furthermore, in the case where$$ \ell ' > \ell ,$$ we show that ifFis not CR transversal at$$0\in M_\ell ,$$ then it must be transversally flat. The latter is best possible.more » « less
-
A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ . We show several distributions to illustrate the shape differences of the different contributions.more » « less
-
Abstract Let$$p_{1},\ldots ,p_{n}$$ be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ be a set of$$\delta $$ -tubes such that$$T_{j}$$ passes through$$p_{j}$$ . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ along with a line$$\ell _{j}$$ through each point$$p_{j}$$ , there exist$$j\neq k$$ for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ . It follows from the latter result that any set of$$n$$ points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253.more » « less
-
Abstract We show that the affine vertex superalgebra V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of \mathfrak{sp}_{2n}times 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V^{k}(\mathfrak{osp}_{1|2n})-modules into V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for \mathfrak{sp}_{2n}, we show that the simple algebra L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L_{k}(\mathfrak{sp}_{2n})-modules are rigid.more » « less
An official website of the United States government
