Context.Time-delay cosmography uses strong gravitational lensing of a time-variable source to infer the Hubble constant. The measurement is independent from both traditional distance ladder and CMB measurements. An accurate measurement with this technique requires considering the effects of objects along the line of sight outside the primary lens, which is quantified by the external convergence (κext). In absence of such corrections,H0will be biased towards higher values in overdense fields and lower values in underdense fields. Aims.We discuss the current state of the methods used to account for environment effects. We present a new software package built for this kind of analysis and others that can leverage large astronomical survey datasets. We apply these techniques to the SDSS J0924+0219 strong lens field. Methods.We infer the relative density of the SDSS J0924+0219 field by computing weighted number counts for all galaxies in the field, and comparing to weighted number counts computed for a large number of fields in a reference survey. We then compute weighted number counts in the Millennium Simulation and compare these results to infer the external convergence of the lens field. Results.Our results show the SDSS J0924+0219 field is a fairly typical line of sight, with medianκext = −0.012 and standard deviationσκ = 0.028.
more »
« less
Testing the Strong Equivalence Principle. II. Relating the External Field Effect in Galaxy Rotation Curves to the Large-scale Structure of the Universe
Abstract Theories of modified gravity generically violate the strong equivalence principle, so that the internal dynamics of a self-gravitating system in freefall depends on the strength of the external gravitational field (the external field effect). We fit rotation curves (RCs) from the SPARC database with a model inspired by Milgromian dynamics (MOND), which relates the outer shape of an RC to the external Newtonian field from the large-scale baryonic matter distribution through a dimensionless parametereN. We obtain a > 4σstatistical detection of the external field effect (i.e.eN> 0 on average), confirming previous results. We then locate the SPARC galaxies in the cosmic web of the nearby universe and find a striking contrast in the fittedeNvalues for galaxies in underdense versus overdense regions. Galaxies in an underdense region between 22 and 45 Mpc from the celestial axis in the northern sky have RC fits consistent witheN≃ 0, while those in overdense regions adjacent to the CfA2 Great Wall and the Perseus−Pisces Supercluster returneNthat are a factor of two larger than the median for SPARC galaxies. We also calculate independent estimates ofeNfrom galaxy survey data and find that they agree with theeNinferred from the RCs within the uncertainties, the chief uncertainty being the spatial distribution of baryons not contained in galaxies or clusters.
more »
« less
- Award ID(s):
- 1911909
- PAR ID:
- 10306025
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 921
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 104
- Size(s):
- Article No. 104
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present radial density profiles, as traced by luminous galaxies and dark matter particles, for voids in 11 snapshots of theTNG 300simulation. The snapshots span 11.65 Gyr of cosmic time, corresponding to the redshift range 0 ≤z≤ 3. Using the comoving galaxy fields, voids were identified via a well-tested, watershed transformation-based algorithm. Voids were defined to be underdense regions that are unlikely to have arisen from Poisson noise, resulting in the selection of ∼100–200 of the largest underdense regions in each snapshot. At all redshifts, the radial density profiles as traced by both the galaxies and the dark matter resemble inverse top-hat functions. However, details of the functions (particularly the underdensities of the innermost regions and the overdensities of the ridges) evolve considerably more for the dark matter density profiles than for the galaxy density profiles. At all redshifts, a linear relationship between the galaxy and dark matter density profiles exists, and the slope of the relationship is similar to the bias estimates forTNG 300snapshots. Lastly, we identify distinct environments in which voids can exist, defining “void-in-void” and “void-in-cloud” populations (i.e., voids that reside in larger underdense or overdense regions, respectively), and we investigate ways in which the relative densities of dark matter and galaxies in the interiors and ridges of these structures vary as a function of void environment.more » « less
-
Abstract We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate some of the key factors responsible for the elevated ionization parameters (U) inferred for high-redshift galaxies, focusing in particular on the role of star-formation-rate surface density (ΣSFR). Using a sample of 317 galaxies with spectroscopic redshiftszspec≃ 1.9–3.7, we construct composite rest-frame optical spectra in bins of ΣSFRand infer electron densities,ne, using the ratio of the [Oii]λλ3727, 3730 doublet. Our analysis suggests a significant (≃3σ) correlation betweenneand ΣSFR. We further find significant correlations betweenUand ΣSFRfor composite spectra of a subsample of 113 galaxies, and for a smaller sample of 25 individual galaxies with inferences ofU. The increase inne—and possibly also the volume filling factor of dense clumps in Hiiregions—with ΣSFRappear to be important factors in explaining the relationship betweenUand ΣSFR. Further, the increase inneand SFR with redshift at a fixed stellar mass can account for most of the redshift evolution ofU. These results suggest that the gas density, which setsneand the overall level of star formation activity, may play a more important role than metallicity evolution in explaining the elevated ionization parameters of high-redshift galaxies.more » « less
-
Abstract The Central Molecular Zone (CMZ) is the way station at the heart of our Milky Way Galaxy, connecting gas flowing in from Galactic scales with the central nucleus. Key open questions remain about its 3D structure, star formation properties, and role in regulating this gas inflow. In this work, we identify a hierarchy of discrete structures in the CMZ using column density maps from Paper I (C. Battersby et al.) We calculate the physical (N(H2),Tdust, mass, radius) and kinematic (HNCO, HCN, and HC3N moments) properties of each structure as well as their bolometric luminosities and star formation rates. We compare these properties with regions in the Milky Way disk and external galaxies. Despite the fact that the CMZ overall is well below the Gao-Solomon dense gas star formation relation (and in modest agreement with the Schmidt–Kennicutt relation), individual structures on the scale of molecular clouds generally follow these star formation relations and agree well with other Milky Way and extragalactic regions. We find that individual CMZ structures require a large external pressure (Pe/kB> 107−9K cm−3) to be considered bound; however, simple estimates suggest that most CMZ molecular-cloud-sized structures are consistent with being in pressure-bounded virial equilibrium. We perform power-law fits to the column density probability distribution functions of the inner 100 pc, SgrB2, and the outer 100 pc of the CMZ as well as several individual molecular cloud structures and find generally steeper power-law slopes (−9 <α< −2) compared with the literature (−6 <α< −1).more » « less
-
Abstract The Baldwin, Philips, & Terlevich diagram of [Oiii]/Hβversus [Nii]/Hα(hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies atz∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from thesimbacosmological hydrodynamic galaxy formation simulation, using thecloudyphotoionization code to compute the nebular line luminosities from Hiiregions. We find that the observed shift toward higher [Oiii]/Hβand [Nii]/Hαvalues at high redshift arises from sample selection: when we consider only the most massive galaxiesM*∼ 1010–11M⊙, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable toz∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, Hiiregion densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing the ionization parameter or increasing the N/O ratio of galaxies at fixed O/H can move galaxies along a self-similar arc in N2-BPT space that is occupied by high-redshift galaxies.more » « less
An official website of the United States government
