skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 8, 2026

Title: 3D CMZ. II. Hierarchical Structure Analysis of the Central Molecular Zone
Abstract The Central Molecular Zone (CMZ) is the way station at the heart of our Milky Way Galaxy, connecting gas flowing in from Galactic scales with the central nucleus. Key open questions remain about its 3D structure, star formation properties, and role in regulating this gas inflow. In this work, we identify a hierarchy of discrete structures in the CMZ using column density maps from Paper I (C. Battersby et al.) We calculate the physical (N(H2),Tdust, mass, radius) and kinematic (HNCO, HCN, and HC3N moments) properties of each structure as well as their bolometric luminosities and star formation rates. We compare these properties with regions in the Milky Way disk and external galaxies. Despite the fact that the CMZ overall is well below the Gao-Solomon dense gas star formation relation (and in modest agreement with the Schmidt–Kennicutt relation), individual structures on the scale of molecular clouds generally follow these star formation relations and agree well with other Milky Way and extragalactic regions. We find that individual CMZ structures require a large external pressure (Pe/kB> 107−9K cm−3) to be considered bound; however, simple estimates suggest that most CMZ molecular-cloud-sized structures are consistent with being in pressure-bounded virial equilibrium. We perform power-law fits to the column density probability distribution functions of the inner 100 pc, SgrB2, and the outer 100 pc of the CMZ as well as several individual molecular cloud structures and find generally steeper power-law slopes (−9 <α< −2) compared with the literature (−6 <α< −1).  more » « less
Award ID(s):
2145689 2206510 2108938 1816715 2206509 2206511
PAR ID:
10595396
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
984
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendN∝Ms, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andN–Mtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps. 
    more » « less
  2. ABSTRACT In the centres of the Milky Way and M83, the global environmental properties thought to control star formation are very similar. However, M83’s nuclear star formation rate (SFR), as estimated by synchrotron and H α emission, is an order of magnitude higher than the Milky Way’s. To understand the origin of this difference we use ALMA observations of HCN (1 − 0) and HCO+ (1 − 0) to trace the dense gas at the size scale of individual molecular clouds (0.54 arcsec, 12 pc) in the inner ∼500 pc of M83, and compare this to gas clouds at similar resolution and galactocentric radius in the Milky Way. We find that both the overall gas distribution and the properties of individual clouds are very similar in the two galaxies, and that a common mechanism may be responsible for instigating star formation in both circumnuclear rings. Given the considerable similarity in gas properties, the most likely explanation for the order of magnitude difference in SFR is time variability, with the Central Molecular Zone (CMZ) currently being at a more quiescent phase of its star formation cycle. We show M83’s SFR must have been an order of magnitude higher 5–7 Myr ago. M83’s ‘starburst’ phase was highly localized, both spatially and temporally, greatly increasing the feedback efficiency and ability to drive galactic-scale outflows. This highly dynamic nature of star formation and feedback cycles in galaxy centres means (i) modelling and interpreting observations must avoid averaging over large spatial areas or time-scales, and (ii) understanding the multiscale processes controlling these cycles requires comparing snapshots of a statistical sample of galaxies in different evolutionary stages. 
    more » « less
  3. Abstract In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way’s Galactic Center. We identify dense structures using the CMZoom 1.3 mm dust continuum catalog of objects with typical radii of ∼0.1 pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70μm from the Midcourse Space Experiment, Spitzer, Herschel, and SOFIA, cataloged young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the Central Molecular Zone (CMZ) of ∼0.08Myr−1over the next few 105yr. We calculate upper and lower limits on the CMZ’s incipient SFR of ∼0.45 and ∼0.05Myr−1,respectively, spanning roughly equal to and several times greater than other estimates of CMZ’s recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ≳75% of high-mass star formation is found in regions above a column density ratio (NSMA/NHerschel) of ∼1.5. Finally, we highlight the detection ofatoll sources, a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing Hiiregions in the process of destroying their envelopes. 
    more » « less
  4. The interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 Myr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ. 
    more » « less
  5. The Milky Way’s Central Molecular Zone (CMZ) differs dramatically from our local solar neighbourhood, both in the extreme interstellar medium conditions it exhibits (e.g. high gas, stellar, and feedback density) and in the strong dynamics at play (e.g. due to shear and gas influx along the bar). Consequently, it is likely that there are large-scale physical structures within the CMZ that cannot form elsewhere in the Milky Way. In this paper, we present new results from the Atacama Large Millimeter/submillimeter Array (ALMA) large programme ACES (ALMA CMZ Exploration Survey) and conduct a multi-wavelength and kinematic analysis to determine the origin of the M0.8–0.2 ring, a molecular cloud with a distinct ring-like morphology. We estimate the projected inner and outer radii of the M0.8–0.2 ring to be 79″ and 154″, respectively (3.1 pc and 6.1 pc at an assumed Galactic Centre distance of 8.2 kpc) and calculate a mean gas density >104cm−3, a mass of ~106M, and an expansion speed of ~20 km s−1, resulting in a high estimated kinetic energy (>1051erg) and momentum (>107Mkm s−1). We discuss several possible causes for the existence and expansion of the structure, including stellar feedback and large-scale dynamics. We propose that the most likely cause of the M0.8–0.2 ring is a single high-energy hypernova explosion. To viably explain the observed morphology and kinematics, such an explosion would need to have taken place inside a dense, very massive molecular cloud, the remnants of which we now see as the M0.8–0.2 ring. In this case, the structure provides an extreme example of how supernovae can affect molecular clouds. 
    more » « less