Existing star-forming vs. active galactic nucleus (AGN) classification schemes using optical emission-line diagnostics mostly fail for low-metallicity and/or highly star-forming galaxies, missing AGN in typical
The Baldwin, Philips, & Terlevich diagram of [O
- Publication Date:
- NSF-PAR ID:
- 10362890
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 80
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ∼ 0 dwarfs. To recover AGN in dwarfs with strong emission lines (SELs), we present a classification scheme optimizing the use of existing optical diagnostics. We use Sloan Digital Sky Survey emission-line catalogs overlapping the volume- and mass-limited REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntex (ECO) surveys to determine the AGN percentage in SEL dwarfs. Our photoionization grids show that the [Oiii ]/Hβ versus [Sii ]/Hα diagram (Sii plot) and [Oiii ]/Hβ versus [Oi ]/Hα diagram (Oi plot) are less metallicity sensitive and more successful in identifying dwarf AGN than the popular [Oiii ]/Hβ versus [Nii ]/Hα diagnostic (Nii plot or “BPT diagram”). We identify a new category of “star-forming AGN” (SF-AGN) classified as star-forming by the Nii plot but as AGN by the Sii and/or Oi plots. Including SF-AGN, we find thez ∼ 0 AGN percentage in dwarfs with SELs to be ∼3%–16%, far exceeding most previous optical estimates (∼1%). The large range in our dwarf AGN percentage reflects differences in spectral fitting methodologies between catalogs. The highly complete nature of RESOLVE and ECO allows us to normalize strong emission-line galaxy statistics to the full galaxy population, reducing the dwarfmore » -
Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies at
z ∼ 1.5 in the CANDELS Lyα Emission at Reionization survey. We compare [Oiii ]/Hβ versus [Sii ]/(Hα + [Nii ]) as an “unVO87” diagram for 461 galaxies and [Oiii ]/Hβ versus [Neiii ]/[Oii ] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev ] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz > 1. The OHNO diagram does effectively separate X-ray AGN and [Nev ]-emitting galaxies from the rest of the population. We find that the [Oiii ]/Hβ line ratios are significantly anticorrelated with stellar mass and significantly correlated with , while [Sii ]/(Hα + [Nii ]) is significantly anticorrelated with . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii ]/Hβ versus [Neiii ]/[Oii ] willmore » -
ABSTRACT We analyse the rest-optical emission-line spectra of z ∼ 2.3 star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O iii]λ5008/Hβ versus [N ii]λ6585/Hα (‘[N ii] BPT’) diagram, we define two populations of z ∼ 2.3 MOSDEF galaxies. These include the high population that is offset towards higher [O iii]λ5008/Hβ and/or [N ii]λ6585/Hα with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O iii]λ5008/Hβ versus [S ii]λλ6718,6733/Hα and the [O iii]λλ4960,5008/[O ii ]λλ3727,3730 (O32) versus ([O iii]λλ4960,5008+[O ii]λλ3727,3730)/Hβ (R23) diagrams, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star formation rate (SFR) and SFR surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e. harder ionizing spectrum) but slightly higher nebular metallicity and higher ionizationmore »
-
Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze H α +[N ii ], [S ii ], and [S iii ] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii ]/H β versus [N ii ]/H α Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the H α flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2 σ ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. Inmore »
-
Abstract We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (
M *∼ 1011M ⊙), compact starburst galaxies atz = 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ΣSFR∼ 2000M ⊙yr−1kpc−2) and powerful galactic outflows (maximum speedsv 98∼ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([Oii] λλ 3726,3729, Hβ , [Oiii] λλ 4959,5007, Hα , [Nii] λλ 6549,6585, and [Sii] λλ 6716,6731) and absorption (Mgii λλ 2796,2803, and Feii λ 2586) lines that allow us to investigate the kinematics of the cool gas phase (T ∼ 104K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (mediann e ∼ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [Sii] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extrememore »