skip to main content


Title: A scalable quantum computing platform using symmetric-top molecules
Abstract

We propose a new scalable platform for quantum computing (QC)—an array of optically trapped symmetric-top molecules (STMs) of the alkaline earth monomethoxide (MOCH3) family. Individual STMs form qubits, and the system is readily scalable to 100–1000 qubits. STM qubits have desirable features for QC compared to atoms and diatomic molecules. The additional rotational degree of freedom about the symmetric-top axis gives rise to closely spaced opposite parityK-doublets that allow full alignment at low electric fields, and the hyperfine structure naturally provides magnetically insensitive states with switchable electric dipole moments. These features lead to much reduced requirements for electric field control, provide minimal sensitivity to environmental perturbations, and allow for 2-qubit interactions that can be switched on at will. We examine in detail the internal structure of STMs relevant to our proposed platform, taking into account the full effective molecular Hamiltonian including hyperfine interactions, and identify useable STM qubit states. We then examine the effects of the electric dipolar interaction in STMs, which not only guide the design of high-fidelity gates, but also elucidate the nature of dipolar exchange in STMs. Under realistic experimental parameters, we estimate that the proposed QC platform could yield gate errors at the 10−3level, approaching that required for fault-tolerant QC.

 
more » « less
Award ID(s):
1806571
NSF-PAR ID:
10306148
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
21
Issue:
9
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 093049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct real-system measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward. 
    more » « less
  2. Abstract

    Metal‐oxo coordination compounds have garnered significant interest over the years. The reactivity of the metal‐oxo bond is governed by the geometry, charge, spin state, and identity of the other ligands. In this report, we characterize a distortedC3v‐symmetric CrV‐oxo complex that has unique magnetic properties, compared with all other known chromyl species. Continuous wave and pulse electron paramagnetic resonance were used to measure the molecularg‐values and53Cr and17O hyperfine interactions. Analysis of density functional theory results and thegand hyperfine tensors, in the context of a crystallographically observed Jahn‐Teller distortion, suggests an electronic structure that results from the mixing of two sets of doubly degenerate orbital states. This mixing is only made possible by the approximate three‐fold symmetry of the ligand set.

     
    more » « less
  3. Abstract The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems 1,2 . In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation 3–5 . We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state 6,7 . Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits 8 and a toric code state on a torus with sixteen data and eight ancillary qubits 9 . Finally, we use this architecture to realize a hybrid analogue–digital evolution 2 and use it for measuring entanglement entropy in quantum simulations 10–12 , experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars 13,14 . Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology. 
    more » « less
  4. Abstract

    Large-scale generation of quantum entanglement between individually controllable qubits is at the core of quantum computing, communications, and sensing. Modular architectures of remotely-connected quantum technologies have been proposed for a variety of physical qubits, with demonstrations reported in atomic and all-photonic systems. However, an open challenge in these architectures lies in constructing high-speed and high-fidelity reconfigurable photonic networks for optically-heralded entanglement among target qubits. Here we introduce a programmable photonic integrated circuit (PIC), realized in a piezo-actuated silicon nitride (SiN)-in-oxide CMOS-compatible process, that implements anN×NMach–Zehnder mesh (MZM) capable of high-speed execution of linear optical transformations. The visible-spectrum photonic integrated mesh is programmed to generate optical connectivity on up toN = 8 inputs for a range of optically-heralded entanglement protocols. In particular, we experimentally demonstrated optical connections between 16 independent pairwise mode couplings through the MZM, with optical transformation fidelities averaging 0.991 ± 0.0063. The PIC’s reconfigurable optical connectivity suffices for the production of 8-qubit resource states as building blocks of larger topological cluster states for quantum computing. Our programmable PIC platform enables the fast and scalable optical switching technology necessary for network-based quantum information processors.

     
    more » « less
  5. Abstract

    Interlayer excitons in solid‐state systems have emerged as candidates for realizing novel platforms ranging from excitonic transistors and optical qubits to exciton condensates. Interlayer excitons have been discovered in 2D transition metal dichalcogenides, with large exciton binding energies and the ability to form various van der Waals heterostructures. Here, an oxide system consisting of a single unit cell of Mg2TiO4on MgO (001) is proposed as a platform for hosting interlayer excitons. Using a combination of density functional theory (DFT) calculations, molecular beam epitaxy growth, and in situ crystal truncation rod measurements, it is shown that the Mg2TiO4‐MgO interface can be precisely controlled to yield an internal electric field suitable for hosting interlayer excitons. The atoms in the polar Mg2TiO4layers are observed to be displaced to reduce polarity at the interface with the non‐polar MgO (001) surface. Such polarity‐driven atomic displacements strongly affect electrostatics of the film and the interface, resulting in localization of filled and empty band‐edge states in different layers of the Mg2TiO4film. The DFT calculations suggest that the electronic structure is favorable for localization of photoexcited electrons in the bottom layer and holes in the top layer, which may bind to form interlayer exciton states.

     
    more » « less