skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: Phylogenetic conservatism drives nutrient dynamics of coral reef fishes
Abstract

The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer “chemical traits” associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs. We find: (1) phylogenetic relatedness is the best predictor of all chemical traits, substantially outweighing the importance of ecological factors thought to be key drivers of these traits, (2) phylogenetic conservatism in chemical traits is greater in the Caribbean than Polynesia, where our data suggests that ecological forces have a greater influence on chemical trait variation, and (3) differences in chemical traits between regions can be explained by differences in nutrient limitation associated with the geologic context of our study locations. Our study provides multiple lines of evidence that phylogeny is a critical determinant of contemporary nutrient dynamics on coral reefs. More broadly our findings highlight the utility of evolutionary history to improve prediction in ecosystem ecology.

 
more » « less
Award ID(s):
1637396
NSF-PAR ID:
10306214
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sponges are a diverse phylum of sessile filter‐feeding invertebrates that are abundant on Caribbean reefs and provide essential ecological services, including nutrient cycling, reef stabilization, habitat, and food for a variety of fishes and invertebrates. As prominent members of the benthic community, and thus potential food resources, factors determining the biochemical and energetic content of sponges will affect their trophic contributions to coral reef ecosystems. In order to evaluate the influence of geographic variation on biochemical composition and energetic content in the tissue of sponges, we collected several common and widespread species (Agelas conifera,Agelas tubulata,Amphimedon compressa,Aplysina cauliformis,Niphates amorpha,Niphates erecta, andXestospongia muta) from multiple shallow reefs in four countries across the Caribbean Basin, including Belize, Curaçao, Grand Cayman, and St. Croix, U.S. Virgin Islands. In addition, we correlated inherent species‐level traits, including the production of antipredator chemical defenses and the relative abundance of microbial symbionts, with biochemical and energetic content. We found that energetic content was higher in sponges with antipredator chemical defenses, and was significantly correlated with the concentration of chemical extracts from these sponges. We also noted that sponges with high microbial abundance contained significantly more soluble protein than sponges with low microbial abundance. Finally, both biochemical and energetic content varied significantly among sponges from different locations; sponges from Grand Cayman had the highest lipid and energetic content, whereas sponges from Belize had the highest carbohydrate content but lowest energetic content. Despite similar environmental conditions at these sites, our results demonstrate that biochemical and energetic content of sponges exhibits geographic variability, with potential implications for the trophic ecology of sponges throughout the Caribbean Basin.

     
    more » « less
  2. Functional traits are characteristics of an organism that represent how it interacts with its environment and can influence the structure and function of ecosystems. Ecological stoichiometry provides a framework to understand ecosystem structure and function by modeling the coupled flow of elements (e.g. carbon [C], nitrogen [N], phosphorus [P]) between consumers and their environment. Animals tend to be homeostatic in their nutrient requirements and preferentially sequester the element in shortest supply relative to demand, and release relatively more of the element in excess. Tissue stoichiometry is an important functional trait that allows for predictions among the elemental composition of animals, their diet, and their waste products, with important effects on the cycling and availability of nutrients in ecosystems. Here we examined the tissue stoichiometric niches (C:N:P) and nutrient recycling stoichiometries (N:P) of several filter‐feeding freshwater mussels in the subfamily Ambleminae. Despite occupying the same functional‐feeding group and being restricted to a single subfamily‐level radiation, we found that species occupied distinct stoichiometric niches and that these niches varied, in part, as a function of their evolutionary history. The relationship between phylogenetic divergence and functional divergence suggests that evolutionary processes may be shaping niche complementarity and resource partitioning. Tissue and excretion stoichiometry were negatively correlated as predicted by stoichiometric theory. When scaled to the community, higher species richness and phylogenetic diversity resulted in greater functional evenness and reduced functional dispersion. Filter‐feeding bivalves are an ecologically important guild in freshwater ecosystems globally, and our study provides a more nuanced view of the stoichiometric niches and ecological functions performed by this phylogenetically and ecologically diverse assemblage. 
    more » « less
  3. Abstract

    Trait‐based ecology (TBE) has proven useful in the terrestrial realm and beyond for collapsing ecological complexity into traits that can be compared and generalized across species and scales. However, TBE for marine macroalgae is still in its infancy, motivating research to build the foundation of macroalgal TBE by leveraging lessons learned from other systems.

    Our objectives were to evaluate the utility of mean trait values (MTVs) across species, to explore the potential for intraspecific trait variability, and to identify macroalgal ecological strategies by clustering species with similar traits and testing for bivariate relationships between traits. To accomplish this, we measured thallus toughness, a trait associated with resistance to herbivory, and tensile strength, a trait associated with resistance to physical disturbance, in eight tropical macroalgal species across up to seven sites where they were found around Moorea, French Polynesia.

    We found interspecific trait variation generally exceeded intraspecific variation across species. Furthermore, MTV within species varied across sites, suggesting future research should focus on whether these traits are influenced by site‐specific differences in biotic and abiotic drivers. Species grouped into three clusters representing different ecological strategies: species that were defended against herbivores but not strong, species that were strong but not defended and species that were neither. Intraspecific standardized major axis regressions revealed five species exhibited significant or marginally significant positive relationships between these two traits, suggesting trait syndromes within species. Only one species exhibited a significant intraspecific trade‐off, as indicated by a negative regression slope.

    Synthesis. Our results point to three key takeaways that should provide a foundation to rapidly advance development of TBE for macroalgae in the future. First, our evidence supports the use of MTVs for macroalgae. Second, we identified significant spatial variability in macroalgal traits that may indicate an ability to respond to shifting environmental drivers. Third, measuring even a few traits can be a powerful tool to identify different ecological strategies to resist disturbances such as herbivory and removal by wave action. We hope these novel findings motivate future research into a wider suite of macroalgal traits, functions and strategies to further develop trait‐based approaches for marine macroalgae.

     
    more » « less
  4. Abstract Background The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai’i using three different marker genes (16S rRNA, nif H, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. Results The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix , both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nif H marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales , a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai’i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. Conclusions The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral “super trait,” on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. 
    more » « less
  5. Abstract

    Global climate change is altering coral reef ecosystems. Notably, marine heatwaves are producing widespread coral bleaching events that are increasing in frequency, with projections for annual bleaching events on reefs worldwide by mid‐century.

    Responses of corals to elevated seawater temperatures are modulated by abiotic factors (e.g. environmental regimes) and dominant Symbiodiniaceae endosymbionts that can shift coral traits and contribute to physiological legacy effects on future response trajectories. It is critical, therefore, to characterize shifting physiological and cellular states driven by these factors and evaluate their influence on in situ bleaching (and recovery) events. We use back‐to‐back bleaching events (2014, 2015) in Hawai'i to characterize the cellular and organismal phenotypes ofMontipora capitatacorals dominated by heat‐sensitiveCladocopiumor heat‐tolerantDurusdiniumSymbiodiniaceae at two reef sites.

    Despite fewer degree heating weeks in the first‐bleaching event relative to the second (7 vs. 10),M. capitatableaching severity was greater [bleached cover: ~70% (2014) vs. 50% (2015)] and environmental history (site effects) on coral phenotypes were more pronounced. Symbiodiniaceae affected bleaching responses, but immunity and antioxidant activity was similar in all corals, despite differences in bleaching phenotypes.

    We demonstrate that repeat bleaching triggers cellular responses that shift holobiont multivariate phenotypes. These perturbed multivariate phenotypes constitute physiological legacies, which set corals on trajectories (positive and/or negative) that influence future coral performance. Collectively, our data support the need for greater tracking of stress response in a multivariate context to better understand the biology and ecology of corals in the Anthropocene.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less