We present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. TheVband luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV= 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in theVband is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe IIand Sc IIline velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M⊙, corresponding to a pre-supernova mass of ∼9.5 M⊙, and an explosion energy of ∼0.40 × 1051erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M⊙, coupled with a low explosion energy of 0.19 × 1051erg. The nebular spectrum reveals weak [O I]λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He I, [C I], and Fe I, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population.
more »
« less
A High-velocity Scatterer Revealed in the Thinning Ejecta of a Type II Supernova
Abstract We present deep, nebular-phase spectropolarimetry of the Type II-P/L SN 2013ej, obtained 167 days after explosion with the European Southern Observatory’s Very Large Telescope. The polarized flux spectrum appears as a nearly perfect (92% correlation), redshifted (by ∼4000 km s−1) replica of the total flux spectrum. Such a striking correspondence has never been observed before in nebular-phase supernova spectropolarimetry, although data capable of revealing it have heretofore been only rarely obtained. Through comparison with 2D polarized radiative transfer simulations of stellar explosions, we demonstrate that localized ionization produced by the decay of a high-velocity, spatially confined clump of radioactive56Ni—synthesized by and launched as part of the explosion with final radial velocity exceeding 4500 km s−1—can reproduce the observations through enhanced electron scattering. Additional data taken earlier in the nebular phase (day 134) yield a similarly strong correlation (84%) and redshift, whereas photospheric-phase epochs that sample days 8 through 97 do not. This suggests that the primary polarization signatures of the high-velocity scattering source only come to dominate once the thick, initially opaque hydrogen envelope has turned sufficiently transparent. This detection in an otherwise fairly typical core-collapse supernova adds to the growing body of evidence supporting strong asymmetries across nature’s most common types of stellar explosions, and establishes the power of polarized flux—and the specific information encoded by it in line photons at nebular epochs—as a vital tool in such investigations going forward.
more »
« less
- PAR ID:
- 10306325
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 921
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L35
- Size(s):
- Article No. L35
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.more » « less
-
Abstract We present optical photometry and spectroscopy of the Type IIn supernova (SN) 2021qqp. Its unusual light curve is marked by a long precursor for ≈300 days, a rapid increase in brightness for ≈60 days, and then a sharp increase of ≈1.6 mag in only a few days to a first peak ofMr≈ −19.5 mag. The light curve then declines rapidly until it rebrightens to a second distinct peak ofMr≈ −17.3 mag centered at ≈335 days after the first peak. The spectra are dominated by Balmer lines with a complex morphology, including a narrow component with a width of ≈1300 km s−1(first peak) and ≈2500 km s−1(second peak) that we associate with the circumstellar medium (CSM) and a P Cygni component with an absorption velocity of ≈8500 km s−1(first peak) and ≈5600 km s−1(second peak) that we associate with the SN–CSM interaction shell. Using the luminosity and velocity evolution, we construct a flexible analytical model, finding two significant mass-loss episodes with peak mass loss rates of ≈10 and ≈5M⊙yr−1about 0.8 and 2 yr before explosion, respectively, with a total CSM mass of ≈2–4M⊙. We show that the most recent mass-loss episode could explain the precursor for the year preceding the explosion. The SN ejecta mass is constrained to be ≈5–30M⊙for an explosion energy of ≈(3–10) × 1051erg. We discuss eruptive massive stars (luminous blue variable, pulsational pair instability) and an extreme stellar merger with a compact object as possible progenitor channels.more » « less
-
Abstract We present six epochs of optical spectropolarimetry of the Type II supernova (SN) 2023ixf ranging from ∼2 to 15 days after the explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3 m telescope at Lick Observatory, representing the earliest such observations ever captured for an SN. We observe a high continuum polarizationpcont≈ 1% on days +1.4 and +2.5 before dropping to 0.5% on day +3.5, persisting at that level up to day +14.5. Remarkably, this change coincides temporally with the disappearance of highly ionized “flash” features. The decrease of the continuum polarization is accompanied by a ∼70° rotation of the polarization position angle (PA) as seen across the continuum. The early evolution of the polarization may indicate different geometric configurations of the electron-scattering atmosphere as seen before and after the disappearance of the emission lines associated with highly ionized species (e.g., Heii, Civ, and Niii), which are likely produced by elevated mass loss shortly prior to the SN explosion. We interpret the rapid change of polarization and PA from days +2.5 to +4.5 as the time when the SN ejecta emerge from the dense asymmetric circumstellar material (CSM). The temporal evolution of the continuum polarization and the PA is consistent with an aspherical SN explosion that exhibits a distinct geometry compared to the CSM. The rapid follow-up spectropolarimetry of SN 2023ixf during the shock ionization phase reveals an exceptionally asymmetric mass-loss process leading up to the explosion.more » « less
-
We present an early-phase g-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system B- and V-band photometry and Carnegie Supernova Project natural-system g-band photometry to the Pan-STARRS1 g-band natural photometric system. A Markov Chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of 2:16+0:06 0:06 and a time of first light of MJD 56629.4+0:1 0:1, which is 1:93+0:12 0:13 days (i.e., < 48 hr) before the discovery date (2013 December 4.84 UT) and 19:10+0:12 0:13 days before the time of B-band maximum (MJD 56648.50:1). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si ii 6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to Rc 4 R . In addition to our early-time constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of < 0:018 M . Combined, these limits eectively rule out H-rich nondegenerate companions.more » « less
An official website of the United States government
