skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: SN 2018is: A low-luminosity Type IIP supernova with narrow hydrogen emission lines at early phases
We present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. TheVband luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV= 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in theVband is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe IIand Sc IIline velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M, corresponding to a pre-supernova mass of ∼9.5 M, and an explosion energy of ∼0.40 × 1051erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M, coupled with a low explosion energy of 0.19 × 1051erg. The nebular spectrum reveals weak [O I]λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He I, [C I], and Fe I, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population.  more » « less
Award ID(s):
2205631 2407566 2407565
PAR ID:
10618586
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
694
ISSN:
0004-6361
Page Range / eLocation ID:
A260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an optical photometric and spectroscopic analysis of the fast-declining hydrogen-rich Type II supernova (SN) 2019nyk. The light curve properties of SN 2019nyk align well with those of other fast-declining Type II SNe, such as SNe 2013by and 2014G. SN 2019nyk exhibits a peak absolute magnitude of −18.09 ± 0.17 mag in theVband, followed by a rapid decline at 2.84  ±  0.03 mag (100 d)−1during the recombination phase. The early spectra of SN 2019nyk exhibit high-ionisation emission features as well as narrow H Balmer lines, persisting until 4.1 d since explosion, indicating the presence of circumstellar material (CSM) in close proximity. A comparison of these features with other Type II SNe displaying an early interaction reveals similarities between these features and those observed in SNe 2014G and 2023ixf. We also compared the early spectra to literature models, estimating a mass-loss rate of the order of 10−3Myr−1. Radiation hydrodynamical modelling of the light curve also suggests the mass loss from the progenitor within a short period prior to explosion, totalling 0.16Mof material within 2900Rof the progenitor. Furthermore, light curve modelling infers a zero-age main sequence mass of 15Mfor the progenitor, a progenitor radius of 1031R, and an explosion energy of 1.1 × 1051erg. 
    more » « less
  2. We present optical photometric and spectroscopic observations of the peculiar Type Ia supernovae (SNe Ia) ASASSN-20jq/SN 2020qxp. It is a low-luminosity object, with a peak absolute magnitude ofMB = −17.1 ± 0.5 mag, while its post-peak light-curve decline rate of Δm15(B) = 1.35 ± 0.09 mag and color-stretch parameter ofsBV ⪆ 0.82 is similar to that of normal luminosity SNe Ia. That makes it a prevalent outlier in both the SN Ia luminosity-width and the luminosity-color-stretch relations. The analysis of the early light curves indicates a possible “bump” during the first ≈1.4 days of explosion. ASASSN-20jq synthesized a low radioactive56Ni mass of 0.09 ± 0.01 M. The near-maximum light spectra of the supernova show strong Si IIabsorption lines, indicating a cooler photosphere than normal SNe Ia; however, it lacks Ti IIabsorption lines. Additionally, it shows unusually strong absorption features of O Iλ7773 and the Ca IInear-infrared triplet. The nebular spectra of ASASSN-20jq show a remarkably strong but narrow forbidden [Ca II]λλ7291, 7324 doublet emission that has not been seen in SNe Ia except for a handful of Type Iax events. There is also a marginal detection of the [O I]λλ6300, 6364 doublet emission in nebular spectra, which is extremely rare. Both the [Ca II] and [O I] lines are redshifted by roughly 2000 km s−1. ASASSN-20jq also exhibits a strong [Fe II]λ7155 emission line with a tilted-top line profile, which is identical to the [Fe II]λ16433 line profile. The asymmetric [Fe II] line profiles, along with the redshifted [Ca II] and emission lines, suggest a high central density white dwarf progenitor that underwent an off-center delayed-detonation explosion mechanism, synthesizing roughly equal amounts of56Ni during the deflagration and detonation burning phases. The equal production of56Ni in both burning phases distinguishes ASASSN-20jq from normal bright and subluminous SNe Ia. Assuming this scenario, we simultaneously modeled the optical and near-infrared nebular spectra, achieving a good agreement with the observations. The light curve and spectroscopic features of ASASSN-20jq do not align with any single sub-class of SNe Ia. However, the significant deviation from the luminosity versus light-curve shape relations (along with several light-curve and spectroscopic features) exhibits similarities to some 2002es-like objects. Therefore, we have identified ASASSN-20jq as an extreme candidate within the broad and heterogeneous parameter space of 2002es-like SNe Ia. 
    more » « less
  3. Abstract We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time (“flash”) spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of Hi, Hei, Ciii, and Niiiwith a narrow core and broad, symmetric wings (i.e., “IIn-like”) arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of Heii, Civ, Niv/v, and Ovbecame visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale oftIIn= 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes ofMw2= −18.7 mag andMg= −18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of M ̇ = 10 2 M yr−1(vw= 50 km s−1), confined to a distance ofr< 5 × 1014cm. Assuming a wind velocity ofvw= 50 km s−1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion. 
    more » « less
  4. Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate of M ̇ = 10 2 M yr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion. 
    more » « less
  5. Abstract We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with an M ̇ ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin. 
    more » « less