Abstract Direct ink writing (DIW) is an extrusion-based additive manufacturing technology. It has gained wide attentions in both industry and research because of its simple design and versatile platform. In electric-field-assisted Direct Ink Writing (eDIW) processes, an external electric field is added between the nozzle and the printing substrate to manipulate the ink-substrate wetting dynamics and therefore optimize the ink printability. eDIW was found effective in printing liquids that are typically difficult to print in the conventional DIW processes. In this paper, an eDIW process modeling system based on machine learning (ML) algorithms is developed. The system is found effective in predicting eDIW printing geometry under varied process parameter settings. Image processing approaches to collect experiment data are developed. Accuracies of different machine learning algorithms for predicting printing results and trace width are compared and discussed. The capabilities, applications and limitations of the presented machine learning-based modeling approach are presented.
more »
« less
Machine learning techniques in the examination of the electron-positron pair creation process
We employ two machine learning techniques, i.e., neural networks and genetic-programming-based symbolic regression, to examine the dynamics of the electron-positron pair creation process with full space–time resolution inside the interaction zone of a supercritical electric field pulse. Both algorithms receive multiple sequences of partially dressed electronic and positronic spatial probability densities as training data and exploit their features as a function of the dressing strength in order to predict each particle’s spatial distribution inside the electric field. A linear combination of both predicted densities is then compared with the unambiguous total charge density, which also contains contributions associated with the independent vacuum polarization process. After its subtraction, the good match confirms the validity of the machine learning approach and lends some credibility to the validity of the predicted single-particle densities.
more »
« less
- Award ID(s):
- 2106585
- PAR ID:
- 10306365
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America B
- Volume:
- 38
- Issue:
- 12
- ISSN:
- 0740-3224; JOBPDE
- Format(s):
- Medium: X Size: Article No. 3582
- Size(s):
- Article No. 3582
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fast breakdown (FB), a breakdown process composed of systems of high‐velocity streamers, has been observed to precede lightning leader formation and play a critical role in lightning initiation. Vigorous FB events are responsible for the most powerful natural radio emissions on Earth, known as narrow bipolar events (NBEs). In this paper, an improved version of the Griffiths and Phelps (1976,https://doi.org/10.1029/jc081i021p03671) model of streamer breakdown is used alongside supervised machine learning techniques to probe the required electric fields and potentials inside thunderstorms to produce FB and NBEs. Our results show that the electrostatic conditions needed to produceFB observed in New Mexico at 9 km altitude andFB in Florida at 14 km altitude are about the same, each requiring about 100 MV potential difference to propagate 500 m. Additionally, the model illustrates how electric field enhancement ahead of propagating FB can initiate rebounding FB of the opposite polarity.more » « less
-
In this study, we investigated hierarchical microarchitecture formation of magnetic barium hexaferrite (BF) platelets inside the polydimethylsiloxane (PDMS) matrix using electric and magnetic field colloidal assembly technique. First, external fields were applied to the colloidal solution to form the microstructure before curing the composites. After microstructure formation the composites were cured to freeze the microstructure by the application of heat. We investigated two different cases in this study-(1) magnetic field processed composites and (2) multi-field processed composites which were processed under both magnetic and electric field. We observed that macro-chains formed due to the electric and magnetic field had much higher length compared to the macro-chains formed due to the just magnetic field. For both cases individuals BHF are found to be oriented in the direction of external field. The analysis of SEM microstructures using ImageJ and MATLAB showed that at least two different level of hierarchies are present in the microstructure for both cases which can be named as BHF stacks and micro-chains. From the microstructure analysis, we found that compared to just magnetic field processed composites, the orientation of individual particles, BHF stacks and micro-chains in relation to the external field were found to be higher for the multi-field processed composites. Magneto-electro-hydrodynamics modeling of the polymer-particulate mixture predicted similar behavior. Computational simulations were performed wherein particulates, subjected to both DEP forces and additional magnetic dipole interactions, were allowed to form quasi-equilibrium structures before locking in a final structure to represent curing. Results show that dielectrophoretic (DEP) force produced from the local non-uniform electric field facilitates the translation of the platelets towards formation of chain-like structure, while external magnetic field augmented the rotation of particles inside the chain-like structure. Analysis of the simulation of microstructures confirms that multiple level of hierarchies are present in the composites microstructure for both cases, while the case with both electric and magnetic fields produced longer chains. The understanding of the hierarchical microstructure formation using the multi-field processing technique will help in the future to fabricate more complex microarchitectures with resulting multi-material properties.more » « less
-
Abstract The electric field distribution in the ionization waves propagating over a microchannel array dielectric surface, with the channels either empty or filled with distilled water, is measured by ps Electric Field Induced Second Harmonic (EFISH) generation. The surface ionization wave is initiated by the atmospheric pressure N2-Ar plasma jet impinging on the surface vertically and powered by ns pulse discharge bursts. The results show that the electric field inside the microchannels, specifically its horizontal component, is enhanced by up to a factor of 2. The field enhancement region is localized within the channels. The vertical electric field inside the channels lags in time compared to the field measured at the ridges, indicating the transient reversal of the ionization wave propagation direction across the channels (toward the jet). This is consistent with the phase-locked plasma emission images and confirmed by the kinetic modeling predictions, which show that the ionization wave “jumps” over the empty channels and propagates into the channels only after the jump between the adjacent ridges. When the channels are filled with water, the wave speed increases by up to 50%, due to the higher effective dielectric constant of the surface. No evidence of a significant electric field enhancement near the dielectric surface (ceramic or water) has been detected, within the spatial resolution of the present diagnostic, ~100 μm.more » « less
-
Molecular and collective reorientations in interfacial water are by-and-large decelerated near surfaces subjected to outgoing electric fields (pointing from surface to liquid, i.e., when the surface carries positive charge). In incoming fields at negatively charged surfaces, these rates show a nonmonotonic dependence on field strength where fastest reorientations are observed when the field alignment barely offsets the polarizing effects due to interfacial hydrogen bonding. This extremum coincides with a peak of local static permittivity. We use molecular dynamics simulations to explore the impact of background static field on high frequency AC permittivity in hydration water under an electric field mimicking the conditions inside a capacitor where one of the confinement walls is subject to an outgoing field and the other one to an incoming field. At strong static fields, the absorption peak undergoes a monotonic blue shift upon increasing field strength in both hydration layers. At intermediate fields, however, the hydration region at the wall under an incoming field (the negative capacitor plate) features a red shift coinciding with maximal static-permittivity and reorientation-rate. The shift is mostly determined by the variation of the inverse static dielectric constant as proposed for mono-exponentially decaying polarization correlations. Conversely, hydration water at the opposite (positively charged) surface features a monotonic blue shift consistent with conventional saturation. The sensitivity of absorption peaks on the field suggests that surface charge densities could be deduced from sub-THz dielectric spectroscopy experiments in porous materials when interfaces accommodate a major fraction of water contained in the system.more » « less
An official website of the United States government
