skip to main content


Title: Machine learning techniques in the examination of the electron-positron pair creation process

We employ two machine learning techniques, i.e., neural networks and genetic-programming-based symbolic regression, to examine the dynamics of the electron-positron pair creation process with full space–time resolution inside the interaction zone of a supercritical electric field pulse. Both algorithms receive multiple sequences of partially dressed electronic and positronic spatial probability densities as training data and exploit their features as a function of the dressing strength in order to predict each particle’s spatial distribution inside the electric field. A linear combination of both predicted densities is then compared with the unambiguous total charge density, which also contains contributions associated with the independent vacuum polarization process. After its subtraction, the good match confirms the validity of the machine learning approach and lends some credibility to the validity of the predicted single-particle densities.

 
more » « less
Award ID(s):
2106585
NSF-PAR ID:
10306365
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
38
Issue:
12
ISSN:
0740-3224; JOBPDE
Page Range / eLocation ID:
Article No. 3582
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fast breakdown (FB), a breakdown process composed of systems of high‐velocity streamers, has been observed to precede lightning leader formation and play a critical role in lightning initiation. Vigorous FB events are responsible for the most powerful natural radio emissions on Earth, known as narrow bipolar events (NBEs). In this paper, an improved version of the Griffiths and Phelps (1976,https://doi.org/10.1029/jc081i021p03671) model of streamer breakdown is used alongside supervised machine learning techniques to probe the required electric fields and potentials inside thunderstorms to produce FB and NBEs. Our results show that the electrostatic conditions needed to produceFB observed in New Mexico at 9 km altitude andFB in Florida at 14 km altitude are about the same, each requiring about 100 MV potential difference to propagate 500 m. Additionally, the model illustrates how electric field enhancement ahead of propagating FB can initiate rebounding FB of the opposite polarity.

     
    more » « less
  2. Abstract

    Direct ink writing (DIW) is an extrusion-based additive manufacturing technology. It has gained wide attentions in both industry and research because of its simple design and versatile platform. In electric-field-assisted Direct Ink Writing (eDIW) processes, an external electric field is added between the nozzle and the printing substrate to manipulate the ink-substrate wetting dynamics and therefore optimize the ink printability. eDIW was found effective in printing liquids that are typically difficult to print in the conventional DIW processes. In this paper, an eDIW process modeling system based on machine learning (ML) algorithms is developed. The system is found effective in predicting eDIW printing geometry under varied process parameter settings. Image processing approaches to collect experiment data are developed. Accuracies of different machine learning algorithms for predicting printing results and trace width are compared and discussed. The capabilities, applications and limitations of the presented machine learning-based modeling approach are presented.

     
    more » « less
  3. Abstract

    We have performed hybrid kinetic-fluid simulations of a positive column in alternating current (AC) argon discharges over a range of driving frequenciesfand gas pressurepfor the conditions when the spatial nonlocality of the electron energy distribution function (EEDF) is substantial. Our simulations confirmed that the most efficient conditions of plasma maintenance are observed in the dynamic regime when time modulations of mean electron energy (temperature) are substantial. The minimal values of the root mean square electric field and the electron temperature have been observed atf/pvalues of about 3 kHz Torr−1in a tube of radiusR= 1 cm. The ionization rate and plasma density reached maximal values under these conditions. The numerical solution of a kinetic equation allowed accounting for the kinetic effects associated with spatial and temporal nonlocality of the EEDF. Using thekineticenergy of electrons as an independent variable, we solved an anisotropic tensor diffusion equation in phase space. We clarified the role of different flux components during electron diffusion in phase space over surfaces of constanttotalenergy. We have shown that the kinetic theory uncovers a more exciting and rich physics than the classical ambipolar diffusion (Schottky) model. Non-monotonic radial distributions of excitation rates, metastable densities, and plasma density have been observed in our simulations atpR >6 Torr cm. The predicted off-axis plasma density peak in the dynamic regime has never been observed in experiments so far. We hope our results stimulate further experimental studies of the AC positive column. The kinetic analysis could help uncover new physics even for such a well-known plasma object as a positive column in noble gases.

     
    more » « less
  4. Abstract

    Frictional heating, frequently termed Joule heating, results from the difference in ion and neutral flows in the Earth's upper atmosphere and is a major energy sink for the coupled magnetosphere‐ionosphere‐thermosphere system. During disturbed geomagnetic conditions, energy input from the Earth's magnetosphere can strongly enhance ion velocities and densities, which will generally increase the rate of Joule heating. Previous theoretical and experimental studies have shown that small‐scale variations in Joule heating can be quite significant in the overall energy budget. In this study, we employ high‐resolution fitting of ion velocities obtained by Super Dual Auroral Radar Network (SuperDARN) coherent scatter, along with spatially resolved neutral wind data from the Poker Flat Scanning Doppler Imager, to examine the spatial and temporal structure ofFregion ion temperature enhancements, as well as changes in Joule heating rates due to the neutral wind. These results are compared to those obtained using Poker Flat Incoherent Scatter Radar in order to assess the validity of this analysis, with the objective of developing a method that can be applied to any current or future neutral measurements worldwide, thanks to the global coverage of SuperDARN. We examine the agreement between the ion temperatures predicted using the Scanning Doppler Imager‐SuperDARN method and the temperatures measured directly by Poker Flat Incoherent Scatter Radar and discuss possible reasons for any discrepancies. We observe significant spatial structure in both the ion temperature and Joule heating rates during periods of magnetic activity.

     
    more » « less
  5. In this study, we investigated hierarchical microarchitecture formation of magnetic barium hexaferrite (BF) platelets inside the polydimethylsiloxane (PDMS) matrix using electric and magnetic field colloidal assembly technique. First, external fields were applied to the colloidal solution to form the microstructure before curing the composites. After microstructure formation the composites were cured to freeze the microstructure by the application of heat. We investigated two different cases in this study-(1) magnetic field processed composites and (2) multi-field processed composites which were processed under both magnetic and electric field. We observed that macro-chains formed due to the electric and magnetic field had much higher length compared to the macro-chains formed due to the just magnetic field. For both cases individuals BHF are found to be oriented in the direction of external field. The analysis of SEM microstructures using ImageJ and MATLAB showed that at least two different level of hierarchies are present in the microstructure for both cases which can be named as BHF stacks and micro-chains. From the microstructure analysis, we found that compared to just magnetic field processed composites, the orientation of individual particles, BHF stacks and micro-chains in relation to the external field were found to be higher for the multi-field processed composites. Magneto-electro-hydrodynamics modeling of the polymer-particulate mixture predicted similar behavior. Computational simulations were performed wherein particulates, subjected to both DEP forces and additional magnetic dipole interactions, were allowed to form quasi-equilibrium structures before locking in a final structure to represent curing. Results show that dielectrophoretic (DEP) force produced from the local non-uniform electric field facilitates the translation of the platelets towards formation of chain-like structure, while external magnetic field augmented the rotation of particles inside the chain-like structure. Analysis of the simulation of microstructures confirms that multiple level of hierarchies are present in the composites microstructure for both cases, while the case with both electric and magnetic fields produced longer chains. The understanding of the hierarchical microstructure formation using the multi-field processing technique will help in the future to fabricate more complex microarchitectures with resulting multi-material properties. 
    more » « less