In this paper, we assess the noise-susceptibility of coherent macroscopic single random phase encoding (SRPE) lensless imaging by analyzing how much information is lost due to the presence of camera noise. We have used numerical simulation to first obtain the noise-free point spread function (PSF) of a diffuser-based SRPE system. Afterwards, we generated a noisy PSF by introducing shot noise, read noise and quantization noise as seen in a real-world camera. Then, we used various statistical measures to look at how the shared information content between the noise-free and noisy PSF is affected as the camera-noise becomes stronger. We have run identical simulations by replacing the diffuser in the lensless SRPE imaging system with lenses for comparison with lens-based imaging. Our results show that SRPE lensless imaging systems are better at retaining information between corresponding noisy and noiseless PSFs under high camera noise than lens-based imaging systems. We have also looked at how physical parameters of diffusers such as feature size and feature height variation affect the noise robustness of an SRPE system. To the best of our knowledge, this is the first report to investigate noise robustness of SRPE systems as a function of diffuser parameters and paves the way for the use of lensless SRPE systems to improve imaging in the presence of image sensor noise.
more »
« less
Hyperuniform scalar random fields for lensless, multispectral imaging systems
We propose a novel framework for the systematic design of lensless imaging systems based on the hyperuniform random field solutions of nonlinear reaction-diffusion equations from pattern formation theory. Specifically, we introduce a new class of imaging point-spread functions (PSFs) with enhanced isotropic behavior and controllable sparsity. We investigate PSFs and modulated transfer functions for a number of nonlinear models and demonstrate that two-phase isotropic random fields with hyperuniform disorder are ideally suited to construct imaging PSFs with improved performances compared to PSFs based on Perlin noise. Additionally, we introduce a phase retrieval algorithm based on non-paraxial Rayleigh–Sommerfeld diffraction theory and introduce diffractive phase plates with PSFs designed from hyperuniform random fields, called hyperuniform phase plates (HPPs). Finally, using high-fidelity object reconstruction, we demonstrate improved image quality using engineered HPPs across the visible range. The proposed framework is suitable for high-performance lensless imaging systems for on-chip microscopy and spectroscopy applications.
more »
« less
- Award ID(s):
- 2015700
- PAR ID:
- 10306749
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 21
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 5360
- Size(s):
- Article No. 5360
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multiscale Physics‐Informed Neural Networks for the Inverse Design of Hyperuniform Optical MaterialsAbstract In this study, multiscale physics‐informed neural networks (MscalePINNs) are employed for the inverse design of finite‐size photonic materials with stealthy hyperuniform (SHU) disordered geometries. Specifically, MscalePINNs are shown to capture the fast spatial variations of complex fields scattered by arrays of dielectric nanocylinders arranged according to isotropic SHU point patterns, thus enabling a systematic methodology to inversely retrieve their effective dielectric profiles. This approach extends the recently developed high‐frequency homogenization theory of hyperuniform media and retrieves more general permittivity profiles for applications‐relevant finite‐size SHU and optical systems, unveiling unique features related to their isotropic nature. In particular, the existence of a transparency region beyond the long‐wavelength approximation is numerically corroborated, enabling the retrieval of effective and isotropic locally homogeneous media even without disorder‐averaging, in contrast to the case of uncorrelated Poisson random patterns. The flexible multiscale network approach introduced here enables the efficient inverse design of more general effective media and finite‐size optical metamaterials with isotropic electromagnetic responses beyond the limitations of traditional homogenization theories.more » « less
-
We propose an efficient inverse design approach for multifunctional optical elements based on adaptive deep diffractive neural networks (a-D2NNs). Specifically, we introduce a-D2NNs and design two-layer diffractive devices that can selectively focus incident radiation over two well-separated spectral bands at desired distances. We investigate focusing efficiencies at two wavelengths and achieve targeted spectral line shapes and spatial point-spread functions (PSFs) with optimal focusing efficiency. In particular, we demonstrate control of the spectral bandwidths at separate focal positions beyond the theoretical limit of single-lens devices with the same aperture size. Finally, we demonstrate devices that produce super-oscillatory focal spots at desired wavelengths. The proposed method is compatible with current diffractive optics and doublet metasurface technology for ultracompact multispectral imaging and lensless microscopy applications.more » « less
-
We propose a diffuser-based lensless underwater optical signal detection system. The system consists of a lensless one-dimensional (1D) camera array equipped with random phase modulators for signal acquisition and one-dimensional integral imaging convolutional neural network (1DInImCNN) for signal classification. During the acquisition process, the encoded signal transmitted by a light-emitting diode passes through a turbid medium as well as partial occlusion. The 1D diffuser-based lensless camera array is used to capture the transmitted information. The captured pseudorandom patterns are then classified through the 1DInImCNN to output the desired signal. We compared our proposed underwater lensless optical signal detection system with an equivalent lens-based underwater optical signal detection system in terms of detection performance and computational cost. The results show that the former outperforms the latter. Moreover, we use dimensionality reduction on the lensless pattern and study their theoretical computational costs and detection performance. The results show that the detection performance of lensless systems does not suffer appreciably. This makes lensless systems a great candidate for low-cost compressive underwater optical imaging and signal detection.more » « less
-
In this paper, we have used the angular spectrum propagation method and numerical simulations of a single random phase encoding (SRPE) based lensless imaging system, with the goal of quantifying the spatial resolution of the system and assessing its dependence on the physical parameters of the system. Our compact SRPE imaging system consists of a laser diode that illuminates a sample placed on a microscope glass slide, a diffuser that spatially modulates the optical field transmitting through the input object, and an image sensor that captures the intensity of the modulated field. We have considered two-point source apertures as the input object and analyzed the propagated optical field captured by the image sensor. The captured output intensity patterns acquired at each lateral separation between the input point sources were analyzed using a correlation between the captured output pattern for the overlapping point-sources, and the captured output intensity for the separated point sources. The lateral resolution of the system was calculated by finding the lateral separation values of the point sources for which the correlation falls below a threshold value of 35% which is a value chosen in accordance with the Abbe diffraction limit of an equivalent lens-based system. A direct comparison between the SRPE lensless imaging system and an equivalent lens-based imaging system with similar system parameters shows that despite being lensless, the performance of the SRPE system does not suffer as compared to lens-based imaging systems in terms of lateral resolution. We have also investigated how this resolution is affected as the parameters of the lensless imaging system are varied. The results show that SRPE lensless imaging system shows robustness to object to diffuser-to-sensor distance, pixel size of the image sensor, and the number of pixels of the image sensor. To the best of our knowledge, this is the first work to investigate a lensless imaging system’s lateral resolution, robustness to multiple physical parameters of the system, and comparison to lens-based imaging systems.more » « less
An official website of the United States government
