This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS.
more » « less- Award ID(s):
- 1855394
- PAR ID:
- 10306887
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.more » « less
-
null (Ed.)Background : Machine learning has been used for classification of physical behavior bouts from hip-worn accelerometers; however, this research has been limited due to the challenges of directly observing and coding human behavior “in the wild.” Deep learning algorithms, such as convolutional neural networks (CNNs), may offer better representation of data than other machine learning algorithms without the need for engineered features and may be better suited to dealing with free-living data. The purpose of this study was to develop a modeling pipeline for evaluation of a CNN model on a free-living data set and compare CNN inputs and results with the commonly used machine learning random forest and logistic regression algorithms. Method : Twenty-eight free-living women wore an ActiGraph GT3X+ accelerometer on their right hip for 7 days. A concurrently worn thigh-mounted activPAL device captured ground truth activity labels. The authors evaluated logistic regression, random forest, and CNN models for classifying sitting, standing, and stepping bouts. The authors also assessed the benefit of performing feature engineering for this task. Results : The CNN classifier performed best (average balanced accuracy for bout classification of sitting, standing, and stepping was 84%) compared with the other methods (56% for logistic regression and 76% for random forest), even without performing any feature engineering. Conclusion : Using the recent advancements in deep neural networks, the authors showed that a CNN model can outperform other methods even without feature engineering. This has important implications for both the model’s ability to deal with the complexity of free-living data and its potential transferability to new populations.more » « less
-
Abstract After graphene was first exfoliated in 2004, research worldwide has focused on discovering and exploiting its distinctive electronic, mechanical, and structural properties. Application of the efficacious methodology used to fabricate graphene, mechanical exfoliation followed by optical microscopy inspection, to other analogous bulk materials has resulted in many more two-dimensional (2D) atomic crystals. Despite their fascinating physical properties, manual identification of 2D atomic crystals has the clear drawback of low-throughput and hence is impractical for any scale-up applications of 2D samples. To combat this, recent integration of high-performance machine-learning techniques, usually deep learning algorithms because of their impressive object recognition abilities, with optical microscopy have been used to accelerate and automate this traditional flake identification process. However, deep learning methods require immense datasets and rely on uninterpretable and complicated algorithms for predictions. Conversely, tree-based machine-learning algorithms represent highly transparent and accessible models. We investigate these tree-based algorithms, with features that mimic color contrast, for automating the manual inspection process of exfoliated 2D materials (e.g., MoSe2). We examine their performance in comparison to ResNet, a famous Convolutional Neural Network (CNN), in terms of accuracy and the physical nature of their decision-making process. We find that the decision trees, gradient boosted decision trees, and random forests utilize physical aspects of the images to successfully identify 2D atomic crystals without suffering from extreme overfitting and high training dataset demands. We also employ a post-hoc study that identifies the sub-regions CNNs rely on for classification and find that they regularly utilize physically insignificant image attributes when correctly identifying thin materials.
-
GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions.more » « less
-
GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions.more » « less