Background : Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods : Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results : Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m 2 . Conclusions : Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.
more »
« less
Application of Convolutional Neural Network Algorithms for Advancing Sedentary and Activity Bout Classification
Background : Machine learning has been used for classification of physical behavior bouts from hip-worn accelerometers; however, this research has been limited due to the challenges of directly observing and coding human behavior “in the wild.” Deep learning algorithms, such as convolutional neural networks (CNNs), may offer better representation of data than other machine learning algorithms without the need for engineered features and may be better suited to dealing with free-living data. The purpose of this study was to develop a modeling pipeline for evaluation of a CNN model on a free-living data set and compare CNN inputs and results with the commonly used machine learning random forest and logistic regression algorithms. Method : Twenty-eight free-living women wore an ActiGraph GT3X+ accelerometer on their right hip for 7 days. A concurrently worn thigh-mounted activPAL device captured ground truth activity labels. The authors evaluated logistic regression, random forest, and CNN models for classifying sitting, standing, and stepping bouts. The authors also assessed the benefit of performing feature engineering for this task. Results : The CNN classifier performed best (average balanced accuracy for bout classification of sitting, standing, and stepping was 84%) compared with the other methods (56% for logistic regression and 76% for random forest), even without performing any feature engineering. Conclusion : Using the recent advancements in deep neural networks, the authors showed that a CNN model can outperform other methods even without feature engineering. This has important implications for both the model’s ability to deal with the complexity of free-living data and its potential transferability to new populations.
more »
« less
- PAR ID:
- 10227390
- Date Published:
- Journal Name:
- Journal for the Measurement of Physical Behaviour
- ISSN:
- 2575-6605
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results: Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m2. Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.more » « less
-
Abstract Background Hip-worn accelerometer cut-points have poor validity for assessing children’s sedentary time, which may partly explain the equivocal health associations shown in prior research. Improved processing/classification methods for these monitors would enrich the evidence base and inform the development of more effective public health guidelines. The present study aimed to develop and evaluate a novel computational method (CHAP-child) for classifying sedentary time from hip-worn accelerometer data. Methods Participants were 278, 8–11-year-olds recruited from nine primary schools in Melbourne, Australia with differing socioeconomic status. Participants concurrently wore a thigh-worn activPAL (ground truth) and hip-worn ActiGraph (test measure) during up to 4 seasonal assessment periods, each lasting up to 8 days. activPAL data were used to train and evaluate the CHAP-child deep learning model to classify each 10-s epoch of raw ActiGraph acceleration data as sitting or non-sitting, creating comparable information from the two monitors. CHAP-child was evaluated alongside the current practice 100 counts per minute (cpm) method for hip-worn ActiGraph monitors. Performance was tested for each 10-s epoch and for participant-season level sedentary time and bout variables (e.g., mean bout duration). Results Across participant-seasons, CHAP-child correctly classified each epoch as sitting or non-sitting relative to activPAL, with mean balanced accuracy of 87.6% (SD = 5.3%). Sit-to-stand transitions were correctly classified with mean sensitivity of 76.3% (SD = 8.3). For most participant-season level variables, CHAP-child estimates were within ± 11% (mean absolute percent error [MAPE]) of activPAL, and correlations between CHAP-child and activPAL were generally very large (> 0.80). For the current practice 100 cpm method, most MAPEs were greater than ± 30% and most correlations were small or moderate (≤ 0.60) relative to activPAL. Conclusions There was strong support for the concurrent validity of the CHAP-child classification method, which allows researchers to derive activPAL-equivalent measures of sedentary time, sit-to-stand transitions, and sedentary bout patterns from hip-worn triaxial ActiGraph data. Applying CHAP-child to existing datasets may provide greater insights into the potential impacts and influences of sedentary time in children.more » « less
-
Abstract This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS.more » « less
-
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.more » « less