skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reaction Acceleration Promoted by Partial Solvation at the Gas/Solution Interface
Abstract The kinetics of organic reactions of different types in microvolumes (droplets, thin films, and sealed tubes) show effects of gas/solution interfacial area, reaction molecularity and solvent polarity. Partial solvation at the gas/solution interface is a major contributor to the 104‐fold reaction acceleration seen in bimolecular but not unimolecular reactions in microdroplets. Reaction acceleration can be used to manipulate selectivity by solvent choice.  more » « less
Award ID(s):
1905087
PAR ID:
10306912
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPlusChem
Volume:
86
Issue:
10
ISSN:
2192-6506
Format(s):
Medium: X Size: p. 1362-1365
Size(s):
p. 1362-1365
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To disentangle the factors controlling the rates of accelerated reactions in droplets, we used mass spectrometry to study the Katritzky transamination in levitated Leidenfrost droplets of different yet constant volumes over a range of concentrations while holding concentration constant by adding back the evaporated solvent. The set of concentration and droplet volume data indicates that the reaction rate in the surface region is much higher than that in the interior. These same effects of concentration and volume were also seen in bulk solutions. Three pyrylium reagents with different surface activity showed differences in transamination reactivity. The conclusion is drawn that reactions with surface‐active reactants are subject to greater acceleration, as seen particularly at lower concentrations in systems of higher surface‐to‐volume ratios. These results highlight the key role that air‐solution interfaces play in Katritzky reaction acceleration. They are also consistent with the view that reaction‐increased rate constant is at least in part due to limited solvation of reagents at the interface. 
    more » « less
  2. Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air–water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 10 2 and 10 7 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 10 7 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled. 
    more » « less
  3. Abstract Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. 
    more » « less
  4. A closed system has been designed to perform microdroplet/thin film reactions with solvent recycling capabilities for gram-scale chemical synthesis. Claisen–Schmidt, Schiff base, Katritzky and Suzuki coupling reactions show acceleration factors relative to bulk of 15 to 7700 times in this droplet spray system. These values are much larger than those reported previously for the same reactions in microdroplet/thin film reaction systems. The solvent recycling mode of the new system significantly improves the reaction yield, especially for reactions with smaller reaction acceleration factors. The microdroplet/thin film reaction yield improved on recycling from 33% to 86% and from 32% to 72% for the Katritzky and Suzuki coupling reactions, respectively. The Claisen–Schmidt reaction was chosen to test the capability of this system in gram scale syntheses and rates of 3.18 g per h and an isolated yield of 87% were achieved. 
    more » « less
  5. Reactions in microdroplets can be accelerated and can present unique chemistry compared to reactions in bulk solution. Here, we report the accelerated oxidation of aromatic sulfones to sulfonic acids in microdroplets under ambient conditions without the addition of acid, base, or catalyst. The experimental data suggest that the water radical cation, (H2O)+•, derived from traces of water in the solvent, is the oxidant. The substrate scope of the reaction indicates the need for a strong electron-donating group (e.g., p-hydroxyl) in the aromatic ring. An analogous oxidation is observed in an aromatic ketone with benzoic acid production. The shared mechanism is suggested to involve field-assisted ionization of water at the droplet/air interface, its reaction with the sulfone (M) to form the radical cation adduct, (M + H2O)+•, followed by 1,2-aryl migration and C–O cleavage. A remarkably high reaction rate acceleration (∼103) and regioselectivity (∼100-fold) characterize the reaction. 
    more » « less