skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape
Abstract

Prediction of high latitude response to climate change is hampered by poor understanding of the role of nonlinear changes in ecosystem forcing and response. While the effects of nonlinear climate change are often delayed or dampened by internal ecosystem dynamics, recent warming events in the Arctic have driven rapid environmental response, raising questions of how terrestrial and freshwater systems in this region may shift in response to abrupt climate change. We quantified environmental responses to recent abrupt climate change in West Greenland using long-term monitoring and paleoecological reconstructions. Using >40 years of weather data, we found that after 1994, mean June air temperatures shifted 2.2 °C higher and mean winter precipitation doubled from 21 to 40 mm; since 2006, mean July air temperatures shifted 1.1 °C higher. Nonlinear environmental responses occurred with or shortly after these abrupt climate shifts, including increasing ice sheet discharge, increasing dust, advancing plant phenology, and in lakes, earlier ice out and greater diversity of algal functional traits. Our analyses reveal rapid environmental responses to nonlinear climate shifts, underscoring the highly responsive nature of Arctic ecosystems to abrupt transitions.

 
more » « less
NSF-PAR ID:
10307123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
7
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 074027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Effects of climate change‐driven disturbance on lake ecosystems can be subtle; indirect effects include increased nutrient loading that could impact ecosystem function. We designed a low‐level fertilization experiment to mimic persistent, climate change‐driven disturbances (deeper thaw, greater weathering, or thermokarst failure) delivering nutrients to arctic lakes. We measured responses of pelagic trophic levels over 12 yr in a fertilized deep lake with fish and a shallow fishless lake, compared to paired reference lakes, and monitored recovery for 6 yr. Relative to prefertilization in the deep lake, we observed a maximum pelagic response in chla(+201%), dissolved oxygen (DO, −43%), and zooplankton biomass (+88%) during the fertilization period (2001–2012). Other responses to fertilization, such as water transparency and fish relative abundance, were delayed, but both ultimately declined. Phyto‐ and zooplankton biomass and community composition shifted with fertilization. The effects of fertilization were less pronounced in the paired shallow lakes, because of a natural thermokarst failure likely impacting the reference lake. In the deep lake there was (a) moderate resistance to change in ecosystem functions at all trophic levels, (b) eventual responses were often nonlinear, and (c) postfertilization recovery (return) times were most rapid at the base of the food web (2–4 yr) while higher trophic levels failed to recover after 6 yr. The timing and magnitude of responses to fertilization in these arctic lakes were similar to responses in other lakes, suggesting indirect effects of climate change that modify nutrient inputs may affect many lakes in the future.

     
    more » « less
  2. Abstract

    We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes.

     
    more » « less
  3. Abstract

    The rapid decline of Arctic sea ice, including sea ice area (SIA) retreat and sea ice thinning, is a striking manifestation of global climate change. Analysis of 40 CMIP6 models reveals a very large spread in both model simulations of the September SIA and thickness and the timing of a summer ice-free Arctic Ocean. The existing SIA-based evaluation metrics are deficient due to observational uncertainty, prominent internal variability, and indirect Arctic response to global forcing. Given the critical roles of sea ice thickness (SIT) in determining Arctic ice variation throughout the seasonal cycle and the April SIT bridging the winter freezing and summer melting processes, we propose two SIT-based metrics, the April mean SIT and summer SIA response to April SIT, to assess climate models’ capability to reproduce the historical change of the Arctic sea ice area. The selected 11 good models reduce the uncertainty in the projected first ice-free Arctic by 70% relative to 11 poor models. The chosen models’ ensemble mean projects the first ice-free year in 2049 (2043) under the shared socio-economic pathways (SSP)2-4.5 (SSP5-8.5) scenario with one standard deviation of the inter-model spread of 12.0 (8.9) years.

     
    more » « less
  4. Abstract

    Almost half of the global terrestrial soil carbon (C) is stored in the northern circumpolar permafrost region, where air temperatures are increasing two times faster than the global average. As climate warms, permafrost thaws and soil organic matter becomes vulnerable to greater microbial decomposition. Long‐term soil warming of ice‐rich permafrost can result in thermokarst formation that creates variability in environmental conditions. Consequently, plant and microbial proportional contributions to ecosystem respiration may change in response to long‐term soil warming. Natural abundance δ13C and Δ14C of aboveground and belowground plant material, and of young and old soil respiration were used to inform a mixing model to partition the contribution of each source to ecosystem respiration fluxes. We employed a hierarchical Bayesian approach that incorporated gross primary productivity and environmental drivers to constrain source contributions. We found that long‐term experimental permafrost warming introduced a soil hydrology component that interacted with temperature to affect old soil C respiration. Old soil C loss was suppressed in plots with warmer deep soil temperatures because they tended to be wetter. When soil volumetric water content significantly decreased in 2018 relative to 2016 and 2017, the dominant respiration sources shifted from plant aboveground and young soil respiration to old soil respiration. The proportion of ecosystem respiration from old soil C accounted for up to 39% of ecosystem respiration and represented a 30‐fold increase compared to the wet‐year average. Our findings show that thermokarst formation may act to moderate microbial decomposition of old soil C when soil is highly saturated. However, when soil moisture decreases, a higher proportion of old soil C is vulnerable to decomposition and can become a large flux to the atmosphere. As permafrost systems continue to change with climate, we must understand the thresholds that may propel these systems from a C sink to a source.

     
    more » « less
  5. In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change. Here, we use body size and shape, a set of integrated traits predicted to shift in response to rising temperatures with effects on fitness, and insulin-like growth factor-1 as a case study to explore these ideas. We review what is known about changes in body size and shape in response to rising temperatures and then illustrate why endocrine signalling systems are likely to be critical in mediating these effects. Lastly, we discuss research approaches that will advance understanding of the processes that underlie rapid responses to climate change and the role endocrine systems will have. Knowledge of the mechanisms involved in phenotypic responses to climate change will be essential for predicting both the ecological and the long-term evolutionary consequences of a warming climate.

    This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.

     
    more » « less