skip to main content


Title: Radically Enhanced Dual Recognition
Abstract

Complexation between a viologen radical cation (V.+) and cyclobis(paraquat‐p‐phenylene) diradical dication (CBPQT2(.+)) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair ofV.+using radical‐pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+) in a size‐matched bisradical dicationic host — namely, cyclobis(paraquat‐2,6‐naphthalene)2(.+), i.e.,CBPQN2(.+). Central to this dual recognition process was the choice of 2,6‐bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations inCBPQN2(.+)suitable for binding twoMV.+with relatively short (3.05–3.25 Å) radical‐pairing distances. The size‐matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the twoMV.+in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex — namely, [(MV)2CBPQN]4(.+)– in MeCN was confirmed by VT1H NMR, as well as by EPR spectroscopy. The solid‐state superstructure of [(MV)2CBPQN]4(.+)reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three differentV.+, suggesting that localization of the radical‐pairing interactions has a strong influence on the packing of the twoMV.+inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host‐guest radical‐pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox‐switchable recognition motif for the construction of MIMs and AMMs.

 
more » « less
Award ID(s):
1900422
NSF-PAR ID:
10307172
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
48
ISSN:
1433-7851
Page Range / eLocation ID:
p. 25454-25462
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Complexation between a viologen radical cation (V.+) and cyclobis(paraquat‐p‐phenylene) diradical dication (CBPQT2(.+)) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair ofV.+using radical‐pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+) in a size‐matched bisradical dicationic host — namely, cyclobis(paraquat‐2,6‐naphthalene)2(.+), i.e.,CBPQN2(.+). Central to this dual recognition process was the choice of 2,6‐bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations inCBPQN2(.+)suitable for binding twoMV.+with relatively short (3.05–3.25 Å) radical‐pairing distances. The size‐matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the twoMV.+in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex — namely, [(MV)2CBPQN]4(.+)– in MeCN was confirmed by VT1H NMR, as well as by EPR spectroscopy. The solid‐state superstructure of [(MV)2CBPQN]4(.+)reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three differentV.+, suggesting that localization of the radical‐pairing interactions has a strong influence on the packing of the twoMV.+inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host‐guest radical‐pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox‐switchable recognition motif for the construction of MIMs and AMMs.

     
    more » « less
  2. Abstract

    Low‐temperature reaction of the tris(pyrazolyl)borate copper(II) hydroxide [iPr2TpCu]2(μ‐OH)2with triphenylsilane under a dinitrogen atmosphere gives the bridging dinitrogen complex [iPr2TpCu]2(μ‐1,2‐N2) (3). X‐ray crystallography reveals an only slightly activated N2ligand (N‐N: 1.111(6) Å) that bridges between two monovalentiPr2TpCu fragments. While DFT studies of mono‐ and dinuclear copper dinitrogen complexes suggest weak π‐backbonding between the d10CuIcenters and the N2ligand, they reveal a degree of cooperativity in the dinuclear Cu‐N2‐Cu interaction. Addition of MeCN, CNAr2,6‐Me, or O2to3releases N2with formation ofiPr2TpCu(L) (L=NCMe, CNAr2,6‐Me2) or [iPr2TpCu]2(μ‐η22‐O2) (1). Addition of triphenylsilane to [iPr2TpCu]2(μ‐OH)2in pentane allows isolation of a key intermediate [iPr2TpCu]2(μ‐H) (5). Although5thermally decays under N2to give3, it reduces unsaturated substrates, such as CO and HC≡CPh to HC(O)H and H2C=CHPh, respectively.

     
    more » « less
  3. Abstract

    The self‐assembly in aqueous solution of the well‐known cyclophane, cyclobis(paraquat‐p‐phenylene) (BB4+), and two cucurbit[7]uril (CB7) hosts around a simple hydroquinol‐based, diamine guest (GH22+) was investigated by1H NMR and electronic absorption spectroscopies, electrospray mass spectrometry and DFT computations. The formation of a quaternary supramolecular assembly [GH22+⋅BB4+⋅ (CB7)2] was shown to be a very efficient process, which takes place not only because of the attractive forces between each of the hosts and the guest, but also because of the lateral interactions between the hosts in the final assembly. This complementary set of attractive interactions results in clear cooperative binding effects that help overcome the entropic barriers for multiple component assembly.

     
    more » « less
  4. Abstract

    Paqueite (Ca3TiSi2[Al,Ti,Si]3O14; IMA 2013‐053) and burnettite (CaVAlSiO6; IMA 2013‐054) are new refractory minerals, occurring as euhedral to subhedral crystals within aluminous melilite in A‐WP1, a type A Ca‐Al‐rich inclusion, andCGft‐12, a compact type A (CTA) from the Allende CV3 carbonaceous chondrite. Type paqueite from A‐WP1 has an empirical formula of (Ca2.91Na0.11)Ti4+Si2(Al1.64Ti4+0.90Si0.24V3+0.12Sc0.07Mg0.03)O14, with a trigonal structure in space groupP321 and cell parametersa = 7.943 Å,c = 4.930 Å, V = 269.37 Å3, andZ = 1. Paqueite’s general formula is Ca3TiSi2(Al,Ti,Si)3O14and the endmember formula is Ca3TiSi2(Al2Ti)O14. Type burnettite fromCGft‐12has an empirical formula of Ca1.01(V3+0.56Al0.25Mg0.18)(Si1.19Al0.81)O6. It assumes a diopside‐typeC2/cstructure witha = 9.80 Å,b = 8.85 Å,c = 5.36 Å, β = 105.6°,V = 447.7 Å3, andZ = 4. Burnettite’s general formula is Ca(V,Al,Mg)AlSiO6and the endmember formula is CaVAlSiO6. Paqueite and burnettite likely originated as condensates, but the observed grains may have crystallized from local V‐rich melts produced during a later thermal event. ForCGft‐12, the compositions of paqueite, clinopyroxene, and perovskite suggest that type As drew from two distinct populations of grains. Hibonite grains drew from multiple populations, but these were well mixed and not equilibrated prior to incorporation into type A host melilite.

     
    more » « less
  5. Abstract

    The commonly used paraquat guestN,N′‐dimethyl‐4,4′‐bipyridinium bis(hexafluorophosphate) (7) was targeted for structural alterations to improve the binding constants with crown ethers and cryptands. The association constant was improved by one order of magnitude (toKa = 1.00 × 106 mol L−1) with the dibenzo‐30‐crown‐10 pyridyl cryptand host5by changing the N‐methyl groups to benzyl and the counterions from PF6to TFSI, that is,11. Moreover, through addition of ap‐bromobenzyloxy moiety on the 4‐position of the pyridyl ring of cryptand18, an association constant ofKa = 5.35 × 106 mol L−1was achieved with paraquat11.

     
    more » « less