skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Individual‐based landscape genomics for conservation: An analysis pipeline
Abstract Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non‐model systems has also enabled a shift away from population‐based sampling to individual‐based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual‐based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population‐based sampling to individual‐based sampling schemes. Here, we discuss the benefits of individual‐based sampling for conservation and describe how landscape genomic methods, paired with individual‐based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user‐friendly, open‐source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). Thealgatrpackage includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology.  more » « less
Award ID(s):
1845682
PAR ID:
10512104
Author(s) / Creator(s):
; ;
Editor(s):
Grueber, Catherine E
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Molecular Ecology Resources
ISSN:
1755-098X
Subject(s) / Keyword(s):
conservation biology conservation genetics genetic diversity landscape genomics population structure spatial analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Genetic diversity plays a key role in maintaining population viability by preventing inbreeding depression and providing the building blocks for adaptation. Understanding how genetic diversity varies across space is, therefore, of key interest in conservation and population genetics.Here, we introducewingen, anrpackage for calculating continuous maps of genetic diversity, including nucleotide diversity, allelic richness, and heterozygosity, from standard genotypic and spatial data using a spatial moving window approach. We provide functions to account for variation in sample size across space using rarefaction, to create kriging‐interpolated maps of genetic diversity, and to mask any areas that are outside the area of interest.Tests with simulated and empirical datasets demonstrate thatwingencan successfully capture variation in genetic diversity across landscapes from both reduced‐representation and whole genome sequencing datasets. For reduced‐representation datasets,wingen's functions can be run easily on a standard laptop computer, and we provide options for parallelization to increase the efficiency of running larger whole genome datasets.wingenprovides novel and computationally tractable tools for creating informative maps of genetic diversity with applications for conservation prioritization as well as population and landscape genetic analyses. 
    more » « less
  2. Abstract New computational methods and next‐generation sequencing (NGS) approaches have enabled the use of thousands or hundreds of thousands of genetic markers to address previously intractable questions. The methods and massive marker sets present both new data analysis challenges and opportunities to visualize, understand, and apply population and conservation genomic data in novel ways. The large scale and complexity of NGS data also increases the expertise and effort required to thoroughly and thoughtfully analyze and interpret data. To aid in this endeavor, a recent workshop entitled “Population Genomic Data Analysis,” also known as “ConGen 2017,” was held at the University of Montana. The ConGen workshop brought 15 instructors together with knowledge in a wide range of topics including NGS data filtering, genome assembly, genomic monitoring of effective population size, migration modeling, detecting adaptive genomic variation, genomewide association analysis, inbreeding depression, and landscape genomics. Here, we summarize the major themes of the workshop and the important take‐home points that were offered to students throughout. We emphasize increasing participation by women in population and conservation genomics as a vital step for the advancement of science. Some important themes that emerged during the workshop included the need for data visualization and its importance in finding problematic data, the effects of data filtering choices on downstream population genomic analyses, the increasing availability of whole‐genome sequencing, and the new challenges it presents. Our goal here is to help motivate and educate a worldwide audience to improve population genomic data analysis and interpretation, and thereby advance the contribution of genomics to molecular ecology, evolutionary biology, and especially to the conservation of biodiversity. 
    more » « less
  3. Abstract The increasing availability and complexity of next-generation sequencing (NGS) data sets make ongoing training an essential component of conservation and population genetics research. A workshop entitled “ConGen 2018” was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists. 
    more » « less
  4. Insights from conservation genomics have dramatically improved recovery plans for numerous endangered species. However, most taxa have yet to benefit from the full application of genomic technologies. The mountain yellow-legged frog species complex, Rana muscosa and Rana sierrae, inhabits the Sierra Nevada mountains and Transverse/Peninsular Ranges of California and Nevada. Both species have declined precipitously throughout their historical distributions. Conservation management plans outline extensive ongoing recovery efforts but are still based on the genetic structure determined primarily using a single mitochondrial sequence. Our study used two different sequencing strategies – amplicon sequencing and exome capture – to refine our understanding of the population genetics of these imperiled amphibians. We used buccal swabs, museum tissue samples, and archived skin swabs to genotype frog populations across their range. Using the amplicon sequencing and exome capture datasets separately and combined, we document five major genetic clusters. Notably, we found evidence supporting previous species boundaries within Kings Canyon National Park with some exceptions at individual sites. Though we see evidence of genetic clustering, especially in the R. muscosa clade, we also found evidence of some admixture across cluster boundaries in the R. sierrae clade, suggesting a stepping-stone model of population structure. We also find that the southern R. muscosa cluster had large runs of homozygosity and the lowest overall heterozygosity of any of the clusters, consistent with previous reports of marked declines in this area. Overall, our results clarify management unit designations across the range of an endangered species and highlight the importance of sampling the entire range of a species, even when collecting genome-scale data. 
    more » « less
  5. The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics. 
    more » « less