skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The neuroscience of advanced scientific concepts
Abstract Cognitive neuroscience methods can identify the fMRI-measured neural representation of familiar individual concepts, such as apple, and decompose them into meaningful neural and semantic components. This approach was applied here to determine the neural representations and underlying dimensions of representation of far more abstract physics concepts related to matter and energy, such as fermion and dark matter, in the brains of 10 Carnegie Mellon physics faculty members who thought about the main properties of each of the concepts. One novel dimension coded the measurability vs. immeasurability of a concept. Another novel dimension of representation evoked particularly by post-classical concepts was associated with four types of cognitive processes, each linked to particular brain regions: (1) Reasoning about intangibles, taking into account their separation from direct experience and observability; (2) Assessing consilience with other, firmer knowledge; (3) Causal reasoning about relations that are not apparent or observable; and (4) Knowledge management of a large knowledge organization consisting of a multi-level structure of other concepts. Two other underlying dimensions, previously found in physics students, periodicity, and mathematical formulation, were also present in this faculty sample. The data were analyzed using factor analysis of stably responding voxels, a Gaussian-naïve Bayes machine-learning classification of the activation patterns associated with each concept, and a regression model that predicted activation patterns associated with each concept based on independent ratings of the dimensions of the concepts. The findings indicate that the human brain systematically organizes novel scientific concepts in terms of new dimensions of neural representation.  more » « less
Award ID(s):
1748897
PAR ID:
10307294
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Science of Learning
Volume:
6
Issue:
1
ISSN:
2056-7936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Traditional tests of concept knowledge generate scores to assess how well a learner understands a concept. Here, we investigated whether patterns of brain activity collected during a concept knowledge task could be used to compute a neural ‘score’ to complement traditional scores of an individual’s conceptual understanding. Using a novel data-driven multivariate neuroimaging approach—informational network analysis—we successfully derived a neural score from patterns of activity across the brain that predicted individual differences in multiple concept knowledge tasks in the physics and engineering domain. These tasks include an fMRI paradigm, as well as two other previously validated concept inventories. The informational network score outperformed alternative neural scores computed using data-driven neuroimaging methods, including multivariate representational similarity analysis. This technique could be applied to quantify concept knowledge in a wide range of domains, including classroom-based education research, machine learning, and other areas of cognitive science. 
    more » « less
  2. Representational Similarity Analysis (RSA) is a powerful tool for linking brain activity patterns to cognitive processes via similarity, allowing researchers to identify the neural substrates of different cognitive levels of representation. However, the ability to map between levels of representation and brain activity using similarity depends on underlying assumptions about the dynamics of cognitive processing. To demonstrate this point, we present three toy models that make different assumptions about the interactivity within the reading system, (1) discrete, feedforward, (2) cascading, feedforward and (3) fully interactive. With the temporal resolution of fMRI, only the discrete, feedforward model provides a straightforward mapping between activation similarity and level of representation. These simulations indicate the need for a cautious interpretation of RSA results, especially with processes that are highly interactive and with neuroimaging methods that have low temporal resolution. The study further suggests a role for fully-fleshed out computational models in RSA analyses. 
    more » « less
  3. The research presented in this paper tested whether drawing concept maps changes how engineering students construct design problem statements and whether these differences are observable in their brains. The process of identifying and constructing problem statements is a critical step in engineering design. Concept mapping has the potential to expand the problem space that students explore through the attention given to the relationship between concepts. It helps integrate existing knowledge in new ways. Engineering students (n=66) were asked to construct a problem statement to improve mobility on campus. Half of these students were randomly chosen to first receive instructions about how to develop a concept map and were asked to draw a concept map about mobility systems on campus. The semantic similarity of concepts in the students’ problem statements, the length of their problem statements, and their neurocognition when developing their statements were measured. The results indicated that students who were asked to first draw concept maps produced a more diverse problem statement with less semantically similar words. The students who first developed concept maps also produce significantly longer problem statements. Concept mapping changed students’ neurocognition. The students who used concept mapping elicited less cognitive activation in their left prefrontal cortex (PFC) and more concentrated activation in their right PFC. The right PFC is generally associated with divergent thinking and the left PFC is generally associated with convergent and analytical thinking. These results provide new insight into how educational interventions, like concept mapping, can change students’ cognition and neurocognition. Better understanding how concept maps, and other tools, help students approach complex problems and the associated changes that occur in their brain can lay the groundwork for novel advances in engineering education that support new tools and pedagogy development for design. 
    more » « less
  4. Abstract The research presented in this paper explores how engineering students cognitively manage concept generation and measures the effects of additional dimensions of sustainability on design cognition. Twelve first-year and eight senior engineering students generated solutions to 10 design problems. Half of the problems included additional dimensions of sustainability. The number of unique design solutions students developed and their neurocognitive activation were measured. Without additional requirements for sustainability, first-year students generated significantly more solutions than senior engineering students. First-year students recruited higher cortical activation in the brain region generally associated with cognitive flexibility, and divergent and convergent thinking. Senior engineering students recruited higher activation in the brain region generally associated with uncertainty processing and self-reflection. When additional dimensions of sustainability were present, first-year students produced fewer solutions. Senior engineering students generated a similar number of solutions. Senior engineering students required less cortical activation to generate a similar number of solutions. The varying patterns of cortical activation and different number of solutions between first-year and senior engineering students begin to highlight cognitive differences in how students manage and retrieve information in their brain during design. Students’ ability to manage complex requirements like sustainability may improve with education. 
    more » « less
  5. Abstract The study presented in this paper applies hidden Markov modeling (HMM) to uncover the recurring patterns within a neural activation dataset collected while designers engaged in a design concept generation task. HMM uses a probabilistic approach that describes data (here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on the fMRI data's temporal and spatial properties, HMM enables an automatic inference on states in neurocognitive activation data that are highly likely to occur in concept generation. The states with a higher likelihood of occupancy show more activation in the brain regions from the executive control network, the default mode network, and the middle temporal cortex. Different activation patterns and transfers are associated with these states, linking to varying cognitive functions, for example, semantic processing, memory retrieval, executive control, and visual processing, that characterize possible transitions in cognition related to concept generation. HMM offers new insights into cognitive dynamics in design by uncovering the temporal and spatial patterns in neurocognition related to concept generation. Future research can explore new avenues of data analysis methods to investigate design neurocognition and provide a more detailed description of cognitive dynamics in design. 
    more » « less