skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ground-state phase diagram of the t-t ′ -J model
We report results of large-scale ground-state density matrix renormalization group (DMRG) calculations on t- t -J cylinders with circumferences 6 and 8. We determine a rough phase diagram that appears to approximate the two-dimensional (2D) system. While for many properties, positive and negative t values ( t / t = ± 0.2 ) appear to correspond to electron- and hole-doped cuprate systems, respectively, the behavior of superconductivity itself shows an inconsistency between the model and the materials. The t < 0 (hole-doped) region shows antiferromagnetism limited to very low doping, stripes more generally, and the familiar Fermi surface of the hole-doped cuprates. However, we find t < 0 strongly suppresses superconductivity. The t > 0 (electron-doped) region shows the expected circular Fermi pocket of holes around the ( π , π ) point and a broad low-doped region of coexisting antiferromagnetism and d-wave pairing with a triplet p component at wavevector ( π , π ) induced by the antiferromagnetism and d-wave pairing. The pairing for the electron low-doped system with t > 0 is strong and unambiguous in the DMRG simulations. At larger doping another broad region with stripes in addition to weaker d-wave pairing and striped p-wave pairing appears. In a small doping region near x = 0.08 for t 0.2 , we find an unconventional type of stripe involving unpaired holes located predominantly on chains spaced three lattice spacings apart. The undoped two-leg ladder regions in between mimic the short-ranged spin correlations seen in two-leg Heisenberg ladders.  more » « less
Award ID(s):
2110041
PAR ID:
10307360
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
44
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2109978118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A search for resonances in top quark pair ( t t ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 1.4 + 1.2 pb
    more » « less
  2. Abstract An unusual class of equal massp-wave universal trimers with symmetry L Π = 1 ± is identified, for both a two-component fermionic trimer withs- andp-wave scattering length close to unitarity and for a one-component fermionic trimer atp-wave unitarity. Moreover, fermionic trimers made of atoms with two internal spin components are found for L Π = 1 ± , when thep-wave interaction between spin-up and spin-down fermions is close to unitarity and/or when the interaction between two spin-up fermions is close to thep-wave unitary limit. The universality of thesep-wave universal trimers is tested here by considering van der Waals interactions in a Lennard–Jones potential with different numbers of two-body bound states; our calculations also determine the value of the scattering volume or length where the trimer state hits zero energy and can be observed as a recombination resonance. The faux-Efimov effect appears with trimer symmetry L Π = 1 when the two fermion interactions are close top-wave unitarity and the lowest 1 / R 2 coefficient gets modified, thereby altering the usual Wigner threshold law for inelastic processes involving three-body continuum channels. 
    more » « less
  3. MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti 3 C 2 T x MXene monoflakes have exceptional thermal stability at temperatures up to 600 ° C in air, while multiflakes readily oxidize in air at 300 ° C. Density functional theory calculations indicate that confined water between Ti 3 C 2 T x flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti 3 C 2 T x films at 600 ° C, resulting in substantial stability improvement in multiflake films (can withstand 600 ° C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti 3 C 2 T x oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability. 
    more » « less
  4. The explicit breaking of the axial symmetry by quantum fluctuations gives rise to the so-called axial anomaly. This phenomenon is solely responsible for the decay of the neutral pion π0into two photons (γγ), leading to its unusually short lifetime. We precisely measured the decay width Γ of the π 0   γ γ process. The differential cross sections for π0photoproduction at forward angles were measured on two targets, carbon-12 and silicon-28, yielding Γ ( π 0   γ γ ) = 7.798 ± 0.056 ( stat . ) ± 0.109 ( syst . )  eV , where stat. denotes the statistical uncertainty and syst. the systematic uncertainty. We combined the results of this and an earlier experiment to generate a weighted average of Γ ( π 0   γ γ ) = 7.802 ± 0.052 ( stat . ) ± 0.105 ( syst . )  eV . Our final result has a total uncertainty of 1.50% and confirms the prediction based on the chiral anomaly in quantum chromodynamics. 
    more » « less
  5. Abstract Introduction: We present an extensive theoretical investigation of the electron impact excitation of doubly-ionized titanium (Ti III) to meet the needs of spectral analysis and plasma modeling. OBJECTIVES: The main objective of this work is to extend the currently scarce database of both structure and collision data for Ti III. METHODS: The calculation was performed in the close-coupling approximation using theB-splineR-matrix method. The multi-configuration Hartree–Fock method in combination withB-spline configuration interaction expansions and the non-orthogonal orbitals technique is employed for accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target states. Relativistic effects are treated at the semi-relativistic Breit-Pauli approximation level. RESULTS: The present close-coupling expansion includes 138 fine-structure levels of Ti III belonging to the 3 d 2 , 4 s 2 , 4 s 4 p , 3 d 4 l ( l = 0 3 ), 3 d 5 l ( l = 0 3 ), 3 d 6 s , and 3 d 6 p configurations. Comprehensive sets of radiative and electron collisional data are reported for all of the possible transitions between the 138 fine-structure levels. Thermally averaged collision strengths are determined using a Maxwellian distribution for a wide range of temperatures from 10 2 K to 10 5 K. The accuracy of the calculated radiative parameters is validated by comparing with available values from the NIST database and previous literature. CONCLUSION: Given the lack of sufficient currently available experimental and theoretical data, the electron impact excitation cross sections of the Ti III fine-structure levels presented here are systematic, extensive, and internally consistent, thus making them suitable for many modeling applications. 
    more » « less