skip to main content


Title: Attractive forces slow contact formation between deformable bodies underwater

Thermodynamics tells us to expect underwater contact between two hydrophobic surfaces to result in stronger adhesion compared to two hydrophilic surfaces. However, the presence of water changes not only energetics but also the dynamic process of reaching a final state, which couples solid deformation and liquid evacuation. These dynamics can create challenges for achieving strong underwater adhesion/friction, which affects diverse fields including soft robotics, biolocomotion, and tire traction. Closer investigation, requiring sufficiently precise resolution of film evacuation while simultaneously controlling surface wettability, has been lacking. We perform high-resolution in situ frustrated total internal reflection imaging to track underwater contact evolution between soft-elastic hemispheres of varying stiffness and smooth–hard surfaces of varying wettability. Surprisingly, we find the exponential rate of water evacuation from hydrophobic–hydrophobic (adhesive) contact is three orders of magnitude lower than that from hydrophobic–hydrophilic (nonadhesive) contact. The trend of decreasing rate with decreasing wettability of glass sharply changes about a point where thermodynamic adhesion crosses zero, suggesting a transition in mode of evacuation, which is illuminated by three-dimensional spatiotemporal height maps. Adhesive contact is characterized by the early localization of sealed puddles, whereas nonadhesive contact remains smooth, with film-wise evacuation from one central puddle. Measurements with a human thumb and alternatively hydrophobic/hydrophilic glass surface demonstrate practical consequences of the same dynamics: adhesive interactions cause instability in valleys and lead to a state of more trapped water and less intimate solid–solid contact. These findings offer interpretation of patterned texture seen in underwater biolocomotive adaptations as well as insight toward technological implementation.

 
more » « less
NSF-PAR ID:
10307411
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
41
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2104975118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The mineral industry uses tremendous amounts of water every year in the processing of ores. Sustainable practices associated with the processing of ores are, therefore, of critical importance. The project described herein is the first step toward producing a dry, particle-separation process based upon control and exploitation of adhesive forces. In this research, the goal is to determine the surface energy of particles, and further, whether the solid sur- face energy can be used to understand the adhesion between these particles and surface-modified substrates. Glass spheres were chosen to represent silicate minerals, the most abundant type of minerals found in mineral deposits. The solid surface energy was found by using contact angle measurements and by applying the van Oss-Good-Chaudhury (VOGC) method. The VOGC method utilizes three-liquid triads to determine the Lifshitz- van der Waals, Lewis acid and Lewis base surface energy components. Surface energies from plasma-cleaned glass were between 40.2 and 60.2 mJ/m2; for the same glass with a hydrophobic chemical surface treatment, trichloro(octadecyl)silane (TCOD), the surface energy was between 20.8 and 20.9 mJ/m2; and for the glass with a hydrophilic chemical surface treatment (n1-(3-trimethoxysilylpropyl) diethylenetriamine (TMPA)) the surface energy was between 46.3 and 61.6 mJ/m2. The particle-substrate adhesion was also measured using a mechanical impact tester. Glass disks and beads were used, cleaned and surface treated with TCOD and TMPA. A custom horizontal impact tester was designed and used to measure the adhesion force between the glass spheres and a glass disk substrate. Impact of the disk/particle puck causes particle removal as tensile forces act on the particles. The tensile detachment force and adhesive force are equal at a critical particle size. Johnson- Kendall-Roberts (JKR) theory was used to determine the interfacial energy between the particles and the surface. The average interfacial energy of plasma cleaned glass, glass treated with TCOD and with TMPA were 44.8 mJ/m2, 21.6 mJ/m2, and 40.1 mJ/m2, respectively. These values are in good agreement with the literature values and with the interfacial energy determined using the VOGC method described above, demonstrating that two approaches compare favorably, despite the dramatically different methods (molecular vs mechanical) utilized. 
    more » « less
  2. Abstract

    The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.

     
    more » « less
  3. Altering soil wettability by inclusion of hydrophobicity could be an effective way to restrict evaporation from soil, thereby conserving water resources. In this study, 4-μL sessile water droplets were evaporated from an artificial soil millipore comprised of three glass (i.e. hydrophilic) and Teflon (i.e. hydrophobic) 2.38-mm-diameter beads. The distance between the beads were kept constant (i.e. center-to-center spacing of 3.1 mm). Experiments were conducted in an environmental chamber at an air temperature of 20°C and 30% and 75% relative humidity (RH). Evaporation rates were faster (i.e. ∼19 minutes and ∼49 minutes at 30% and 75% RH) from hydrophilic pores than the Teflon one (i.e. ∼24 minutes and ∼52 minutes at 30% and 75% RH) due in part to greater air-water contact area. Rupture of liquid droplets during evaporation was analyzed and predictions were made on rupture based on contact line pinning and depinning, projected surface area just before rupture, and pressure difference across liquid-vapor interface. It was observed that, in hydrophilic pore, the liquid droplet was pinned on one bead and the contact line on the other beads continuously decreased by deforming the liquid-vapor interface, though all three gas-liquid-solid contact lines decreased at a marginal rate in hydrophobic pore. For hydrophilic and hydrophobic pores, approximately 1.7 mm2 and 1.8–2 mm2 projected area of the droplet was predicted at 30% and 75% RH just before rupture occurs. Associated pressure difference responsible for rupture was estimated based on the deformation of curvature of liquid-vapor interface. 
    more » « less
  4. Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm 2 and transcutaneous adhesive strength of 511 N/cm 2 , generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond. 
    more » « less
  5. Reduction of irrigation is a pressing issue in the food-water-energy nexus. Around two-third of global water withdrawals are used for irrigation in the areas with insufficient rainfall. In the U.S. Central High Plains, the Ogallala Aquifer is responsible for providing water for the production of corn, wheat, soybeans, andreducing the evaporation of water from soil provides an excellent opportunity to decrease the need for irrigation. In this paper, evaporation of sessile 4-μl water droplets from a single simulated soil pore was observed. Soil pores were created using three 2.35-mm hydrophilic glass or hydrophobic Teflon beads of the same size. The experiments were conducted at the same temperature (20° C) and two relative humidity levels, 45% and 60% RH. Evaporation times were recorded and the transport phenomena were captured using a high-speed camera. Relative humidity directly affected evaporation; evaporation times were lower at the lower RH. The glass surface had higher wettability and therefore the droplets were more stretched on the glass beads, more droplet-air areas were created and evaporation times were approximately 30 minutes at 60% RH. The Teflon surface was hydrophobic, for which air-water contact areas were lower, and evaporation times were longer – approximately 40 minutes at 60% RH. As evaporation progressed, a liquid island formed between two beads at both 45% and 60% RH in for glass and Teflon pores. The rate of decrease of the radius of the liquid island was shorter in Teflon than glass beads, which corresponded to lower evaporation rates from Teflon. 
    more » « less