Using time-domain terahertz spectroscopy in pulsed magnetic fields up to 31 T, we measure the terahertz optical conductivity in an optimally doped thin film of the high-temperature superconducting cuprate La1.84Sr0.16CuO4. We observe systematic changes in the circularly polarized complex optical conductivity that are consistent with cyclotron absorption of 𝑝-type charge carriers characterized by a cyclotron mass of 4.9𝑚e±0.8𝑚e and a scattering rate that increases with magnetic field. These results open the door to studies aimed at characterizing the degree to which electron-electron interactions influence carrier masses in cuprate superconductors.
more »
« less
Anomalous nonlinear terahertz transmission of photoexcited carbon nanotubes
We demonstrate that free-standing multi-walled carbon nanotubes exhibit extraordinary nonlinear terahertz responses upon optical excitation. Terahertz transmission of the photoexcited nanotubes rises in a narrow range of intermediate intensity with increasing intensity, while falling in the regime of low and high intensities. A theoretical analysis shows that the nanotube conductivity drops sharply in the region of intermediate intensity and soars elsewhere. Field-effect mobility and field-induced carrier multiplications are considered to be competing processes governing the rise and fall of the conductivity.
more »
« less
- Award ID(s):
- 1905634
- PAR ID:
- 10307566
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America B
- Volume:
- 38
- Issue:
- 10
- ISSN:
- 0740-3224; JOBPDE
- Format(s):
- Medium: X Size: Article No. 3130
- Size(s):
- Article No. 3130
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Photonics in the frequency range of 5–15 terahertz (THz) potentially open a new realm of quantum materials manipulation and biosensing. This range, sometimes called “the new terahertz gap”, is traditionally difficult to access due to prevalent phonon absorption bands in solids. Low‐loss phonon–polariton materials may realize sub‐wavelength, on‐chip photonic devices, but typically operate in mid‐infrared frequencies with narrow bandwidths and are difficult to manufacture on a large scale. Here, for the first time, quantum paraelectric SrTiO3enables broadband surface phonon–polaritonic devices in 7–13 THz. As a proof of concept, polarization‐independent field concentrators are designed and fabricated to locally enhance intense, multicycle THz pulses by a factor of 6 and increase the spectral intensity by over 90 times. The time‐resolved electric field inside the concentrators is experimentally measured by THz‐field‐induced second harmonic generation. Illuminated by a table‐top light source, the average field reaches 0.5 GV m−1over a large volume resolvable by far‐field optics. These results potentially enable scalable THz photonics with high breakdown fields made of various commercially available phonon–polariton crystals for studying driven phases in quantum materials and nonlinear molecular spectroscopy.more » « less
-
Abstract Photoconductive emitters for terahertz generation hold promise for highly efficient down-conversion of optical photons because it is not constrained by the Manley-Rowe relation. Existing terahertz photoconductive devices, however, faces limits in efficiency due to the semiconductor properties of commonly used GaAs materials. Here, we demonstrate that large bandgap semiconductor GaN, characterized by its high breakdown electric field, facilitates the highly efficient generation of terahertz waves in a coplanar stripline waveguide. Towards this goal, we investigated the excitonic contribution to the electro-optic response of GaN under static electric field both through experiments and first-principles calculations, revealing a robust excitonic Stark shift. Using this electro-optic effect, we developed a novel ultraviolet pump-probe spectroscopy for in-situ characterization of the terahertz electric field strength generated by the GaN photoconductive emitter. Our findings show that terahertz power scales quadratically with optical excitation power and applied electric field over a broad parameter range. We achieved an optical-to-terahertz conversion efficiency approaching 100% within the 0.03–1 THz bandwidth at the highest bias field (116 kV/cm) in our experiment. Further optimization of GaN-based terahertz generation devices could achieve even greater optical-to-terahertz conversion efficiencies.more » « less
-
Abstract The large available bandwidth at sub-terahertz and terahertz frequencies has the potential to enable very high data rates for wireless communications. Moreover, given the large electrical size of terahertz antenna apertures, many future terahertz communication systems will likely operate in the near field. However, due to their reliance on highly directional beams, terahertz systems are susceptible to blockage. Here, we propose using Bessel beams to overcome issues caused by blockage due to their diffraction-free nature and self-healing properties in the near field. We compare the performance of information-bearing Bessel beams and Gaussian beams with and without an obstacle. We later discuss the use of reconfigurable intelligent surfaces to construct terahertz Bessel beams. Finally, we propose a metric to quantify the quality of imperfectly generated terahertz Bessel beams and explore their ability to self-heal. The results demonstrate that Bessel beams are an attractive option for near-field terahertz communications, especially when mitigating the effects of partial blockage.more » « less
An official website of the United States government
