skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observation of cyclotron resonance and measurement of the hole mass in optimally doped La2Sr2-xCuO4
Using time-domain terahertz spectroscopy in pulsed magnetic fields up to 31 T, we measure the terahertz optical conductivity in an optimally doped thin film of the high-temperature superconducting cuprate La1.84⁢Sr0.16⁢CuO4. We observe systematic changes in the circularly polarized complex optical conductivity that are consistent with cyclotron absorption of 𝑝-type charge carriers characterized by a cyclotron mass of 4.9⁢𝑚e±0.8⁢𝑚e and a scattering rate that increases with magnetic field. These results open the door to studies aimed at characterizing the degree to which electron-electron interactions influence carrier masses in cuprate superconductors.  more » « less
Award ID(s):
1905519
PAR ID:
10516003
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
103
Issue:
13
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy–grown thin films of YbRh 2 Si 2 , a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter. 
    more » « less
  2. Abstract This work focuses on the low frequency Drude response of bulk-insulating topological insulator (TI) Bi 2 Se 3 films. The frequency and field dependence of the mobility and carrier density are measured simultaneously via time-domain terahertz spectroscopy. These films are grown on buffer layers, capped by Se, and have been exposed in air for months. Under a magnetic field up to 7 Tesla, we observe prominent cyclotron resonances (CRs). We attribute the sharp CR to two different topological surface states from both surfaces of the films. The CR sharpens at high fields due to an electron-impurity scattering. By using magneto-terahertz spectroscopy, we confirm that these films are bulk-insulating, which paves the way to use intrinsic TIs without bulk carriers for applications including topological spintronics and quantum computing. 
    more » « less
  3. null (Ed.)
    Graphene exhibits unique optoelectronic properties originating from the band structure at the Dirac points. It is an ideal model structure to study the electronic and optical properties under the influence of the applied magnetic field. In graphene, electric field, laser pulse, and voltage can create electron dynamics which is influenced by momentum dispersion. However, computational modeling of momentum-influenced electron dynamics under the applied magnetic field remains challenging. Here, we perform computational modeling of the photoexcited electron dynamics achieved in graphene under an applied magnetic field. Our results show that magnetic field leads to local deviation from momentum conservation for charge carriers. With the increasing magnetic field, the delocalization of electron probability distribution increases and forms a cyclotron-like trajectory. Our work facilitates understanding of momentum resolved magnetic field effect on non-equilibrium properties of graphene, which is critical for optoelectronic and photovoltaic applications. 
    more » « less
  4. We calculate the electrical conductivity of suspended and supported monolayer MoS2 at terahertz (THz) frequencies by means of EMC–FDTD, a multiphysics simulation tool combining an ensemble Monte Carlo (EMC) solver for electron transport and a finite-difference time-domain (FDTD) solver for full-wave electrodynamics. We investigate the role of carrier and impurity densities, as well as substrate choice (SiO2 or hexagonal boron nitride, hBN), in frequency-dependent electronic transport. Owing to the dominance of surface-optical-phonon scattering, MoS2 on SiO2 has the lowest static conductivity, but also the weakest overall frequency dependence of the conductivity. In fact, at high THz frequencies, the conductivity of MoS2 on SiO2 exceeds that of either suspended or hBN-supported MoS2. We extract the parameters for Drude-model fits to the conductivity versus frequency curves obtained from microscopic simulation, which may aid in the experimental efforts toward MoS2 THz applications. 
    more » « less
  5. We demonstrate that free-standing multi-walled carbon nanotubes exhibit extraordinary nonlinear terahertz responses upon optical excitation. Terahertz transmission of the photoexcited nanotubes rises in a narrow range of intermediate intensity with increasing intensity, while falling in the regime of low and high intensities. A theoretical analysis shows that the nanotube conductivity drops sharply in the region of intermediate intensity and soars elsewhere. Field-effect mobility and field-induced carrier multiplications are considered to be competing processes governing the rise and fall of the conductivity. 
    more » « less