skip to main content


Title: Smartphone-powered efficient water disinfection at the point of use
Abstract

Clean water free of bacteria is a precious resource in areas where no centralized water facilities are available. Conventional chlorine disinfection is limited by chemical transportation, storage, and the production of carcinogenic by-products. Here, a smartphone-powered disinfection system is developed for point-of-use (POU) bacterial inactivation. The integrated system uses the smartphone battery as a power source, and a customized on-the-go (OTG) hardware connected to the phone to realize the desired electrical output. Through a downloadable mobile application, the electrical output, either constant current (20–1000 µA) or voltage (0.7–2.1 V), can be configured easily through a user-friendly graphical interface on the screen. The disinfection device, a coaxial-electrode copper ionization cell (CECIC), inactivates bacteria by low levels of electrochemically generated copper with low energy consumption. The strategy of constant current control is applied in this study to solve the problem of uncontrollable copper release by previous constant voltage control. With the current control, a high inactivation efficiency ofE. coli(~6 logs) is achieved with a low level of effluent Cu (~200 µg L−1) in the water samples within a range of salt concentration (0.2–1 mmol L−1). The smartphone-based power workstation provides a versatile and accurate electrical output with a simple graphical user interface. The disinfection device is robust, highly efficient, and does not require complex equipment. As smartphones are pervasive in modern life, the smartphone-powered CECIC system could provide an alternative decentralized water disinfection approach like rural areas and outdoor activities.

 
more » « less
Award ID(s):
1845354
NSF-PAR ID:
10307624
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Clean Water
Volume:
3
Issue:
1
ISSN:
2059-7037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of stimuli‐responsive drug delivery systems offers significant opportunities for innovations in industry. It is possible to produce polymer‐based drug delivery devices enabling spatiotemporal control of the release of the drug triggered by an electrical stimulus. Here we describe the development of a wireless controller for drug delivery from conductive/electroactive polymer‐based biomaterials and demonstrate its functionin vitro. The wireless polymer conduction controller device uses very low power, operating at 2.4 GHz, and has a supply voltage controller circuit which controls electrical stimulation voltage levels. The computer graphical user interface program communicates with the controller device, and it receives device information, device status and temperature data from the controller device. The prototype of the wireless controller system can trigger the delivery of a drug, dexamethasone phosphate, from a matrix of degradable electroactive polymers. Furthermore, we introduce the application ofin silicotoxicity screening as a potentially useful method to facilitate the design of non‐toxic degradable electroactive polymers for a multitude of biotechnological applications, addressing one of the key commercial challenges to biomaterial development, in accordance with ‘safe by design’ principles. © 2020 The Authors.Polymer Internationalpublished by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

     
    more » « less
  2. Chlorine disinfection inevitably generates carcinogenic by-products. Alternative non-chlorine-based techniques in centralized treatment plants cannot produce residual antimicrobial power in water disinfection systems. Here, we propose locally enhanced electric field treatment (LEEFT) for chemical-free water disinfection in pipes. A tubular LEEFT device with coaxial electrodes is rationally developed for easy adaption to current water distribution systems as a segment of the pipelines. The center electrode is modified with perpendicularly grown nanowires, so that the electric field strength near the tips of the nanowires is significantly enhanced for pathogen inactivation. We have demonstrated >6-log inactivation of bacteria with 1 V, a small voltage that can be generated in situ by flowing water. 
    more » « less
  3. null (Ed.)
    This paper presents a reverse electrowetting-on-dielectric (REWOD) energy harvester integrated with rectifier, boost converter, and charge amplifier that is, without bias voltage, capable of powering wearable sensors for monitoring human health in real-time. REWOD has been demonstrated to effectively generate electrical current at a low frequency range (< 3 Hz), which is the frequency range for various human activities such as walking, running, etc. However, the current generated from the REWOD without external bias source is insufficient to power such motion sensors. In this work, to eventually implement a fully self-powered motion sensor, we demonstrate a novel bias-free REWOD AC generation and then rectify, boost, and amplify the signal using commercial components. The unconditioned REWOD output of 95–240 mV AC is generated using a 50 μL droplet of 0.5M NaCl electrolyte and 2.5 mm of electrode displacement from an oscillation frequency range of 1–3 Hz. A seven-stage rectifier using Schottky diodes having a forward voltage drop of 135–240 mV and a forward current of 1 mA converts the generated AC signal to DC voltage. ∼3 V DC is measured at the boost converter output, proving the system could function as a self-powered motion sensor. Additionally, a linear relationship of output DC voltage with respect to frequency and displacement demonstrates the potential of this REWOD energy harvester to function as a self-powered wearable motion sensor.

     
    more » « less
  4. This paper presents a reverse electrowetting-on-dielectric (REWOD) energy harvester integrated with rectifier, boost converter, and charge amplifier that is, without bias voltage, capable of powering wearable sensors for monitoring human health in real-time. REWOD has been demonstrated to effectively generate electrical current at a low frequency range (<3 Hz), which is the frequency range for various human activities such as walking, running, etc. However, the current generated from the REWOD without external bias source is insufficient to power such motion sensors. In this work, to eventually implement a fully self-powered motion sensor, we demonstrate a novel bias-free REWOD AC generation and then rectify, boost, and amplify the signal using commercial components. The unconditioned REWOD output of 95-240 mV AC is generated using a 50 μL droplet of 0.5M NaCl electrolyte and 2.5 mm of electrode displacement from an oscillation frequency range of 1-3 Hz. A seven-stage rectifier using Schottky diodes having a forward voltage drop of 135-240 mV and a forward current of 1 mA converts the generated AC signal to DC voltage. ~3 V DC is measured at the boost converter output, proving the system could function as a self-powered motion sensor. Additionally, a linear relationship of output DC voltage with respect to frequency and displacement demonstrates the potential of this REWOD energy harvester to function as a self-powered wearable motion sensor. 
    more » « less
  5. Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies. Triboelectric nanogenerators (TENGs) utilizing soft polymers with embedded additives and engineered dielectric properties emerge as ideal candidates for such applications. However, the use of solid filler materials in the state-of-the-art TENGs limits the devices' mechanical deformability and long-term durability. The current structural design for TENGs faces the dilemma where the enhanced dielectric constant of the TENG's contact layer leads to an undesirable saturation of the surface charge density. Here, we present a novel scheme to address the above issues, by exploring a liquid-metal-inclusion based TENG (LMI-TENG) where inherently deformable core–shell LMIs are incorporated into wearable high-dielectric-constant polymers. Through a holistic approach integrating theoretical and experimental efforts, we identified the parameter space for designing an LMI-TENG with co-optimized output and mechanical deformability. As a proof of concept, we demonstrated an LMI-TENG based wireless media control system for a self-powered user interface. The device architecture and design scheme presented here provide a promising solution towards the realization of self-powered human-integrated technologies. 
    more » « less