skip to main content


Search for: All records

Award ID contains: 1845354

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Clean water free of bacteria is a precious resource in areas where no centralized water facilities are available. Conventional chlorine disinfection is limited by chemical transportation, storage, and the production of carcinogenic by-products. Here, a smartphone-powered disinfection system is developed for point-of-use (POU) bacterial inactivation. The integrated system uses the smartphone battery as a power source, and a customized on-the-go (OTG) hardware connected to the phone to realize the desired electrical output. Through a downloadable mobile application, the electrical output, either constant current (20–1000 µA) or voltage (0.7–2.1 V), can be configured easily through a user-friendly graphical interface on the screen. The disinfection device, a coaxial-electrode copper ionization cell (CECIC), inactivates bacteria by low levels of electrochemically generated copper with low energy consumption. The strategy of constant current control is applied in this study to solve the problem of uncontrollable copper release by previous constant voltage control. With the current control, a high inactivation efficiency ofE. coli(~6 logs) is achieved with a low level of effluent Cu (~200 µg L−1) in the water samples within a range of salt concentration (0.2–1 mmol L−1). The smartphone-based power workstation provides a versatile and accurate electrical output with a simple graphical user interface. The disinfection device is robust, highly efficient, and does not require complex equipment. As smartphones are pervasive in modern life, the smartphone-powered CECIC system could provide an alternative decentralized water disinfection approach like rural areas and outdoor activities.

     
    more » « less
  2. null (Ed.)
  3. Chlorine disinfection inevitably generates carcinogenic by-products. Alternative non-chlorine-based techniques in centralized treatment plants cannot produce residual antimicrobial power in water disinfection systems. Here, we propose locally enhanced electric field treatment (LEEFT) for chemical-free water disinfection in pipes. A tubular LEEFT device with coaxial electrodes is rationally developed for easy adaption to current water distribution systems as a segment of the pipelines. The center electrode is modified with perpendicularly grown nanowires, so that the electric field strength near the tips of the nanowires is significantly enhanced for pathogen inactivation. We have demonstrated >6-log inactivation of bacteria with 1 V, a small voltage that can be generated in situ by flowing water. 
    more » « less