Abstract Mechanisms of synaptic vesicular fusion and neurotransmitter clearance are highly controlled processes whose finely‐tuned regulation is critical for neural function. This modulation has been suggested to involve pre‐synaptic auto‐receptors; however, their underlying mechanisms of action remain unclear. Previous studies with the well‐definedC. elegansnervous system have used functional imaging to implicate acid sensing ion channels (ASIC‐1) to describe synaptic vesicle fusion dynamics within its eight dopaminergic neurons. Implementing a similar imaging approach with a pH‐sensitive fluorescent reporter and fluorescence resonance after photobleaching (FRAP), we analyzed dynamic imaging data collected from individual synaptic termini in live animals. We present evidence that constitutive fusion of neurotransmitter vesicles on dopaminergic synaptic termini is modulated through DOP‐2 auto‐receptors via a negative feedback loop. Integrating our previous results showing the role of ASIC‐1 in a positive feedback loop, we also put forth an updated model for synaptic vesicle fusion in which, along with DAT‐1 and ASIC‐1, the dopamine auto‐receptor DOP‐2 lies at a modulatory hub at dopaminergic synapses. Our findings are of potential broader significance as similar mechanisms are likely to be used by auto‐receptors for other small molecule neurotransmitters across species. 
                        more » 
                        « less   
                    
                            
                            The dopamine membrane transporter plays an active modulatory role in synaptic dopamine homeostasis
                        
                    
    
            Abstract Modulatory mechanisms of neurotransmitter release and clearance are highly controlled processes whose finely tuned regulation is critical for functioning of the nervous system. Dysregulation of the monoamine neurotransmitter dopamine can lead to several neuropathies. Synaptic modulation of dopamine is known to involve pre‐synaptic D2 auto‐receptors and acid sensing ion channels. In addition, the dopamine membrane transporter (DAT), which is responsible for clearance of dopamine from the synaptic cleft, is suspected to play an active role in modulating release of dopamine. Using functional imaging on theCaenorhabditis elegansmodel system, we show that DAT‐1 acts as a negative feedback modulator to neurotransmitter vesicle fusion. Results from our fluorescence recovery after photo‐bleaching (FRAP) based experiments were followed up with and reaffirmed using swimming‐induced paralysis behavioral assays. Utilizing our numerical FRAP data we have developed a mechanistic model to dissect the dynamics of synaptic vesicle fusion, and compare the feedback effects of DAT‐1 with the dopamine auto‐receptor. Our experimental results and the mechanistic model are of potential broader significance, as similar dynamics are likely to be used by other synaptic modulators including membrane transporters for other neurotransmitters across species. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900212
- PAR ID:
- 10307770
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Neuroscience Research
- Volume:
- 100
- Issue:
- 8
- ISSN:
- 0360-4012
- Page Range / eLocation ID:
- p. 1551-1559
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca 2+ -binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C 2 B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca 2+ influx.more » « less
- 
            Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.more » « less
- 
            Synapses maintain two forms of neurotransmitter release to support communication in the brain. First, evoked neurotransmitter release is triggered by the invasion of an action potential across en passant boutons that form along axons. The probability of evoked release (Pr) varies substantially across boutons, even within a single axon. Such heterogeneity is the result of differences in the probability of a single synaptic vesicle fusing (Pv) and in the number of vesicles available for immediate release, known as the readily-releasable pool (RRP). Spontaneous release (also known as a mini) is an important form of neurotransmission that occurs in the absence of action potentials. Because it cannot be triggered with electrical stimulation, much less is known about potential heterogeneity in the frequency of spontaneous release between boutons. We utilized a photostable and bright fluorescent indicator of glutamate release (iGluSnFR3) to quantify both spontaneous and evoked release at individual glutamatergic boutons. We found that the rate of spontaneous release is quite heterogenous at the level of individual boutons. Interestingly, when measuring both evoked and spontaneous release at single synapses, we found that boutons with the highest rates of spontaneous release also displayed the largest evoked responses.Using a new optical method to measure RRP at individual boutons, we found that this heterogeneity in spontaneous release was strongly correlated with the size of the RRP, but not related to Pv. We conclude that the RRP is a critical and dynamic aspect of synaptic strength that contributes to both evoked and spontaneous vesicle release. Significance StatementNeurotransmitter is released through two mechanisms: action potential-evoked and spontaneous vesicle fusion. It is unknown if some synapses specialize in either evoked or spontaneous release with an antagonistic relationship, or if the two forms of release coexist and have a cooperative relationship. We used a robust optical glutamate indicator to measure both forms of release at individual synapses. We found that the frequency of spontaneous release displays significant heterogeneity and is directly related to the size of the readily releasable pool of vesicles. This finding links both mechanisms of neurotransmitter release and suggests an important signaling mechanism to the postsynaptic neuron at individual synapses.more » « less
- 
            Background: There are various molecular hypotheses regarding Alzheimer’s disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD. Objective: The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions. Methods: We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins. Results: When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation. Conclusions: Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
