Abstract An unusual diastereodivergent stereoselective allylation reaction is presented. It consists of a palladium‐catalyzed allylation reaction of an organocatalytically generated amino isobenzofulvene, where the diastereoselectivity is controlled by the electronic properties of a monodentate, achiral ligand on palladium. One major diastereoisomer is formed using triarylphosphines substituted with neutral or electron‐donating substituents of the aryl group, while those with electron‐withdrawing substituents favor the other diastereoisomer. The diastereoselectivity correlates with the Taft inductive parameter of substituents on the triarylphosphine ligand on palladium. The synergistic reaction involves both a catalytic secondary amine catalyst for the indene‐aldehyde activation and the monodentate phosphine ligands on palladium, affording a highly enantioselective reaction with up to 98 % enantiomeric excess. Based on computational investigations, the role of the monodentate phosphine ligand on the diastereoselectivity is discussed.
more »
« less
Development and Molecular Understanding of a Pd‐Catalyzed Cyanation of Aryl Boronic Acids Enabled by High‐Throughput Experimentation and Data Analysis
Abstract A synthetic method for the palladium‐catalyzed cyanation of aryl boronic acids using bench stable and non‐toxicN‐cyanosuccinimide has been developed. High‐throughput experimentation facilitated the screen of 90 different ligands and the resultant statistical data analysis identified that ligand σ‐donation, π‐acidity and sterics are key drivers that govern yield. Categorization into three ligand groups – monophosphines, bisphosphines and miscellaneous – was performed before the analysis. For the monophosphines, the yield of the reaction increases for strong σ‐donating, weak π‐accepting ligands, with flexible pendant substituents. For the bisphosphines, the yield predominantly correlates with ligand lability. The applicability of the designed reaction to a wider substrate scope was investigated, showing good functional group tolerance in particular with boronic acids bearing electron‐withdrawing substituents. This work outlines the development of a novel reaction, coupled with a fast and efficient workflow to gain understanding of the optimal ligand properties for the design of improved palladium cross‐coupling catalysts.
more »
« less
- Award ID(s):
- 1925607
- PAR ID:
- 10307799
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Helvetica Chimica Acta
- Volume:
- 104
- Issue:
- 12
- ISSN:
- 0018-019X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Isolable sulfonium-ylide stabilized palladium carbene complexes were synthesized through palladium(II)-induced cyclization of 1,2-alkynylarylsulfanes. X-ray crystallographic analysis characterized the maintenance of a palladium +2 oxidation state, with carbene-carbon–palladium bond lengths of 1.95 Å, indicating partial double bond character. These endocyclic sulfonium ylide carbenes represent the first characterized and/or isolable examples of this ligand class; such groups were previously proposed as reaction intermediates during cyclization–carbonylation reactions. A variety of palladium(II) complexes bearing sulfonium ylide carbene ligands, with differing substituents, were synthesized and the structure and stability of these complexes in solution were analyzed by 1H and 13C NMR spectroscopy, revealing reversibility and a stability dependence on substituents. The chirality of the sulfur heteroatom and the overall properties these ligands provide a potential electronic and steric alternative to existing carbene ligands, which could facilitate the future development of complementary metal-based reactivity.more » « less
-
Abstract The copper(I), silver(I), and gold(I) metals bind π‐ligands by σ‐bonding and π‐back bonding interactions. These interactions were investigated using bidentate ancillary ligands with electron donating and withdrawing substituents. The π‐ligands span from ethylene to larger terminal and internal alkenes and alkynes. Results of X‐ray crystallography, NMR, and IR spectroscopy and gas phase experiments show that the binding energies increase in the order Agmore » « less
-
A combination of high-throughput experimentation (HTE), surface organometallic chemistry (SOMC) and statistical data analysis provided the platform to analyze in situ silica-grafted Mo imido alkylidene catalysts based on a library of 35 phenols. Overall, these tools allowed for the identification of σ-donor electronic effects and dispersive interactions and as key drivers in a prototypical metathesis reaction, homodimerization of 1-nonene. Univariate and multivariate correlation analysis confirmed the categorization of the catalytic data into two groups, depending on the presence of aryl groups in ortho position of the phenol ligand. The initial activity (TOF in ) was predominantly correlated to the σ-donor ability of the aryloxy ligands, while the overall catalytic performance (TON 1 h ) was mainly dependent on attractive dispersive interactions with the used phenol ligands featuring aryl ortho substituents and, in sharp contrast, repulsive dispersive interactions with phenol free of aryl ortho substituents. This work outlines a fast and efficient workflow of gaining molecular-level insight into supported metathesis catalysts and highlights σ-donor ability and noncovalent interactions as crucial properties for designing active d 0 supported metathesis catalysts.more » « less
-
Abstract Suzuki−Miyaura cross‐coupling reactions are used to modify the tyrosine residues onBombyx morisilkworm silk proteins using a water‐soluble palladium catalyst. First, model reactions using tyrosine derivatives are screened to determine optimal reaction conditions. For these reactions, a variety of aryl boronic acids, solvents, buffers, and temperature ranges are explored. Qualitative information on the reaction progress is collected via high‐performance liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR). Optimized reactions are then applied to silk proteins. It is demonstrated the ability to modify silk fibroin in solution by first iodinating the tyrosine residues on the protein, and then carrying out Suzuki‐Miyaura reactions with a variety of boronic acid derivatives. Modification of silk is confirmed with NMR, ion‐exchange chromatography (IEC), UV‐vis, and infrared spectroscopy (IR).more » « less
An official website of the United States government
