We present a combined experimental and density functional theory study that characterizes the charge and spin density in NiX2(3,5-lutidine)4(X= Cl, Br and I). In this material, magnetic exchange interactions occur via Ni2+–halide...halide–Ni2+pathways, forming one-dimensional chains. We find evidence for weak halide...halide covalency in the iodine system, which is greatly reduced whenX= Br and is absent forX= Cl; this is consistent with the reported `switching-on' of magnetic exchange in the larger-halide cases. Our results are benchmarked against density functional theory calculations on [NiHF2(pyrazine)2]SbF6, in which the primary magnetic exchange is mediated by F–H–F bridging ligands. This comparison indicates that, despite the largely depleted charge density found at the centre of halide...halide bonds, these through-space interactions can support strong magnetic exchange gated by weak covalency and enhanced by significant electron density overlapping that of the transition metal centres.
more »
« less
Determining the anisotropy and exchange parameters of polycrystalline spin-1 magnets
Abstract Although low-dimensionalS = 1 antiferromagnets remain of great interest, difficulty in obtaining high-quality single crystals of the newest materials hinders experimental research in this area. Polycrystalline samples are more readily produced, but there are inherent problems in extracting the magnetic properties of anisotropic systems from powder data. Following a discussion of the effect of powder-averaging on various measurement techniques, we present a methodology to overcome this issue using thermodynamic measurements. In particular we focus on whether it is possible to characterise the magnetic properties of polycrystalline, anisotropic samples using readily available laboratory equipment. We test the efficacy of our method using the magnets [Ni(H2O)2(3,5-lutidine)4](BF4)2and Ni(H2O)2(acetate)2(4-picoline)2, which have negligible exchange interactions, as well as the antiferromagnet [Ni(H2O)2(pyrazine)2](BF4)2, and show that we are able to extract the anisotropy parameters in each case. The results obtained from the thermodynamic measurements are checked against electron-spin resonance and neutron diffraction. We also present a density functional method, which incorporates spin–orbit coupling to estimate the size of the anisotropy in [Ni(H2O)2(pyrazine)2](BF4)2.
more »
« less
- Award ID(s):
- 1703003
- PAR ID:
- 10308325
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- Volume:
- 21
- Issue:
- 9
- ISSN:
- 1367-2630
- Page Range / eLocation ID:
- Article No. 093025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.more » « less
-
Abstract Spinel compounds are of great interest in both fundamental and application-oriented perspectives due to the geometric magnetic frustration inherent to their lattice and the resulting complex magnetic states. Here, we applied x-ray diffraction, magnetization, heat capacity and powder inelastic neutron scattering measurements, along with theoretical calculations, to study the exotic properties of chromite-spinel oxides CoCr2O4and MnCr2O4. The temperature dependence of the phonon spectra provides an insight into the correlation between oxygen motion and the magnetic order, as well as the magnetoelectric effect in the ground state of MnCr2O4. Moreover, spin-wave excitations in CoCr2O4and MnCr2O4are compared with Heisenberg model calculations. This approach enables the precise determination of exchange energies and offers a comprehensive understanding of the spin dynamics and relevant exchange interactions in complicated spiral spin ordering.more » « less
-
Abstract In this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2′−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5eV molecule−1indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimatedgfactor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations.more » « less
-
Abstract Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes,trans‐[MIVF4(CN)2]2−(M=Re, Os), obtained from their homoleptic [MIVF6]2−parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy oftrans‐[ReF4(CN)2]2−as compared to [ReF6]2−, reflecting the severe departure from an ideal octahedral (Ohpoint group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials.more » « less
An official website of the United States government
