skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modular Design of Supramolecular Ionic Peptides with Cell‐Selective Membrane Activity
Abstract The rational design of materials with cell‐selective membrane activity is an effective strategy for the development of targeted molecular imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme‐mediated molecular transformation followed by supramolecular assembly to form nanofibers in which cationic clusters are presented on a rigid β‐sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self‐assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramolecular nanomaterials with emerging membrane activity for a range of disease targeted molecular imaging and therapy applications.  more » « less
Award ID(s):
1824614
PAR ID:
10308329
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemBioChem
Volume:
22
Issue:
22
ISSN:
1439-4227
Format(s):
Medium: X Size: p. 3164-3168
Size(s):
p. 3164-3168
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The discovery of cell penetrating peptides (CPPs) with unique membrane activity has inspired the design and synthesis of a variety of cell penetrating macromolecules, which offer tremendous opportunity and promise for intracellular delivery of a variety of imaging probes and therapeutics. While cell penetrating macromolecules can be designed and synthesized to have equivalent or even superior cell penetrating activity compared with natural CPPs, most of them suffer from moderate to severe cytotoxicity. Inspired by recent advances in peptide self-assembly and cell penetrating macromolecules, in this work, we demonstrated a new class of peptide assemblies with intrinsic cell penetrating activity and excellent cytocompatibility. Supramolecular assemblies were formed through the self-assembly of de novo designed multidomain peptides (MDPs) with a general sequence of K x (QW) 6 E y in which the numbers of lysine and glutamic acid can be varied to control supramolecular assembly, morphology and cell penetrating activity. Both supramolecular spherical particles and nanofibers exhibit much higher cell penetrating activity than monomeric MDPs while supramolecular nanofibers were found to further enhance the cell penetrating activity of MDPs. In vitro cell uptake results suggested that the supramolecular cell penetrating nanofibers undergo macropinocytosis-mediated internalization and they are capable of escaping from the lysosome to reach the cytoplasm, which highlights their great potential as highly effective intracellular therapeutic delivery vehicles and imaging probes. 
    more » « less
  2. Abstract Many new technologies, such as cancer microenvironment‐induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self‐assembling monomer precursor (SAM‐P), which, at the tumor site, undergoes tumor‐triggered cleavage to release the active form of self‐assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM‐P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor‐mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand–receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor‐triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment‐induced cell targeting and multivalent ligand display approach, and have great potential for use as cell‐specific molecular imaging and therapeutic agents with high sensitivity and specificity. 
    more » « less
  3. Abstract Circularly polarized luminescence (CPL) from chiral molecules is attracting much attention due to its potential use in optical materials. However, formulation of CPL emitters as molecular solids typically deteriorates photophysical properties in the aggregated state leading to quenching and unpredictable changes in CPL behavior impeding materials development. To circumvent these shortcomings, a supramolecular approach can be used to isolate cationic dyes in a lattice of cyanostar‐anion complexes that suppress aggregation‐caused quenching and which we hypothesize can preserve the synthetically‐crafted chiroptical properties. Herein, we verify that supramolecular assembly of small‐molecule ionic isolation lattices (SMILES) allows translation of molecular ECD and CPL properties to solids. A series of cationic helicenes that display increasing chiroptical response is investigated. Crystal structures of three different packing motifs all show spatial isolation of dyes by the anion complexes. We observe the photophysical and chiroptical properties of all helicenes are seamlessly translated to water soluble nanoparticles by the SMILES method. Also, a DMQA helicene is used as FRET acceptor in SMILES nanoparticles of intensely absorbing rhodamine antennae to generate an 18‐fold boost in CPL brightness. These features offer promise for reliably accessing bright materials with programmable CPL properties. 
    more » « less
  4. Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure–activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL–NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL–NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases. 
    more » « less
  5. We report the synthesis of cationic dendrons (1 st and 2 nd generations) with pendant alkyl chains of varying lengths (C 8 , C 12 , C 14 ), which are classified as cationic molecular umbrellas. In each case, the dendron surface moieties were functionalized with guanidine groups, which are fully protonated in aqueous media of pH 7.4, lending cationic character to the solute. We found that these compounds are potent membrane-disrupting antibacterial agents with dose-dependent hemolytic activities. Confocal microscopy confirmed the permeabilization of E. coli and S. aureus cell membranes. A pyrene emission assay confirms that the dendrons are unimolecularly solvated at the concentrations relevant to their antibacterial activity, although they do aggregate at higher concentrations in aqueous buffer. Most importantly, when we compare the activity of these guanidinium-functionalized umbrellas to our previously published data on ammonium-functionalized analogues, we found no significant benefits to guanidinium relative to the ammoniums. The antibacterial activities are similar in all cases tested, and the highest selectivity index was found in the ammonium series, which stands in contrast to many other classes of antibacterial agents for which guanidinylation is typically associated with enhanced activity and selectivity. 
    more » « less