skip to main content


Title: In Situ Heating Neutron and X‐Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive‐Manufactured 316L Stainless Steel
  more » « less
Award ID(s):
1810343
NSF-PAR ID:
10308361
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
4
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Unlike most native metals, the unit cells of metal oxides tend to expand when crystallite sizes approach the nanoscale. Here we review different models that account for this behavior, and we present structural analyses for goethite (α-FeOOH) crystallites from ~10 to ~30 nm. The goethite was investigated during continuous particle growth via the hydrothermal transformation of 2-line ferrihydrite at pH 13.6 at 80, 90, and 100 °C using time-resolved, angle-dispersive synchrotron X-ray diffraction. Ferrihydrite gels were injected into polyimide capillaries with low background scattering, increasing the sensitivity for detecting diffraction from goethite nanocrystals that nucleated upon heating. Rietveld analysis enabled high-resolution extraction of crystallographic and kinetic data. Crystallite sizes for goethite increased with time at similar rates for all temperatures. With increasing crystallite size, goethite unit-cell volumes decreased, primarily as a result of contraction along the c-axis, the direction of closest-packing (space group Pnma). We introduce the coefficient of nanoscale contraction (CNC) as an analog to the coefficient of thermal expansion (CTE) to compare the dependence of lattice strain on crystallite size for goethite and other metal oxides, and we argue that nanoscale-induced crystallographic expansion is quantitatively similar to that produced when goethite is heated. In addition, our first-order kinetic model based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation yielded an activation energy for the transformation of ferrihydrite to goethite of 72.74 ± 0.2 kJ/mol, below reported values for hematite nucleation and growth. 
    more » « less
  2. Abstract

    The magnesium alloy AZ31, which has undergone high-pressure torsion processing, was subjected to in situ annealing microbeam synchrotron high-energy X-ray diffraction and compared to the as-received rolled sheet material that was investigated through in situ neutron diffraction. While the latter only exhibits thermal expansion and minor recovery, the nanostructured specimen displays a complex evolution, including recovery, strong recrystallization, phase transformations, and various regimes of grain growth. Nanometer-scale grain sizes, determined using Williamson–Hall analysis, exhibit seamless growth, aligning with the transition to larger grains, as assessed through the occupancy of single-grain reflections on the diffraction rings. The study uncovers strain anomalies resulting from thermal expansion, segregation of Al atoms, and the kinetics of vacancy creation and annihilation. Notably, a substantial number of excess vacancies were generated through high-pressure torsion and maintained for driving the recrystallization and forming highly activated volumes for diffusion and phase precipitation during heating. The unsystematic scatter observed in the Williamson–Hall plot indicates high dislocation densities following severe plastic deformation, which significantly decrease during recrystallization. Subsequently, dislocations reappear during grain growth, likely in response to torque gradients in larger grains. It is worth noting that the characteristics of unsystematic scatter differ for dislocations created at high and low temperatures, underscoring the strong temperature dependence of slip system activation.

    Graphical Abstract

     
    more » « less
  3. Abstract

    Nanostructured materials can exhibit phase change behavior that deviates from the macroscopic phase behavior. This is exemplified by the ambiguity for the equilibrium phases driving the first open‐circuit voltage (OCV) plateau for the lithiation of Fe3O4nanocrystals. Adding complexity, the relaxed state for LixFe3O4is observed to be a function of electrochemical discharge rate. The phases occurring on the first OCV plateau for the lithiation of Fe3O4nanocrystals have been investigated with density functional theory (DFT) through the evaluation of stable, or hypothesized metastable, reaction pathways. Hypotheses are evaluated through the systematic combined refinement with X‐ray absorption spectroscopy (XAS), X‐ray diffraction (XRD) measurements, neutron‐diffraction measurements, and the measured OCV on samples lithiated tox= 2.0, 3.0, and 4.0 in LixFe3O4. In contrast to the Li–Fe–O bulk phase thermodynamic pathway, Fe0is not observed as a product on the first OCV plateau for 10–45 nm nanocrystals. The phase most consistent with the systematic refinement is LiFe3O4, showing Li+Fe cation disorder. The observed equilibrium concentration for conversion to Fe0occurs atx= 4.0. These definitive phase identifications rely heavily on the systematic combined refinement approach, which is broadly applicable to other nano‐ and mesoscaled systems that have suffered from difficult or crystallite‐size‐dependent phase identification.

     
    more » « less
  4. Key points

    Skeletal muscle relaxation has been primarily studied by assessing the kinetics of force decay. Little is known about the resultant dynamics of structural changes in myosin heads during relaxation.

    The naturally occurring nucleotide 2‐deoxy‐ATP (dATP) is a myosin activator that enhances cross‐bridge binding and kinetics.

    X‐ray diffraction data indicate that with elevated dATP, myosin heads were extended closer to actin in relaxed muscle and myosin heads return to an ordered, resting state after contraction more quickly.

    Molecular dynamics simulations of post‐powerstroke myosin suggest that dATP induces structural changes in myosin heads that increase the surface area of the actin‐binding regions promoting myosin interaction with actin, which could explain the observed delays in the onset of relaxation.

    This study of the dATP‐induced changes in myosin may be instructive for determining the structural changes desired for other potential myosin‐targeted molecular compounds to treat muscle diseases.

    Abstract

    Here we used time‐resolved small‐angle X‐ray diffraction coupled with force measurements to study the structural changes in FVB mouse skeletal muscle sarcomeres during relaxation after tetanus contraction. To estimate the rate of myosin deactivation, we followed the rate of the intensity recovery of the first‐order myosin layer line (MLL1) and restoration of the resting spacing of the third and sixth order of meridional reflection (SM3and SM6) following tetanic contraction. A transgenic mouse model with elevated skeletal muscle 2‐deoxy‐ATP (dATP) was used to study how myosin activators may affect soleus muscle relaxation. X‐ray diffraction evidence indicates that with elevated dATP, myosin heads were extended closer to actin in resting muscle. Following contraction, there is a slight but significant delay in the decay of force relative to WT muscle while the return of myosin heads to an ordered resting state was initially slower, then became more rapid than in WT muscle. Molecular dynamics simulations of post‐powerstroke myosin suggest that dATP induces structural changes in myosin that increase the surface area of the actin‐binding regions, promoting myosin interaction with actin. With dATP, myosin heads may remain in an activated state near the thin filaments following relaxation, accounting for the delay in force decay and the initial delay in recovery of resting head configuration, and this could facilitate subsequent contractions.

     
    more » « less
  5. Metastable phases of the photoswitchable molecular magnet K0.3Co[Fe(CN)6]0.77 ⋅  nH2O in sub-micrometer particles have been structurally investigated by synchrotron powder x-ray diffraction (PXRD) measurements. The K0.3Co[Fe(CN)6]0.77 ⋅  nH2O bulk compound (studied here with a sample having average particle size of 500 nm) undergoes a charge transfer coupled spin transition (CTCST), where spin configurations change between a paramagnetic CoII( S = 3/2) –FeIII( S = 1/2) high-temperature (HT) state and a diamagnetic CoIII( S = 0) –FeII( S = 0) low-temperature (LT) state. The bulk compound exhibits a unique intermediate (IM) phase, which corresponds to a mixture of HT and LT spin states that depend on the cooling rate. Several hidden metastable HT states emerge as a function of thermal and photo stimuli, namely: (1) a quench (Q) state generated from the HT state by flash cooling, (2) a LTPX state obtained by photoexcitation from the LT state derived by thermal relaxation from the Q state, and (3) an IMPX state accessed by photo-irradiation from the IM state. A sample with a smaller particle size, 135 nm, is investigated for which the particles are on the scale of the coherent LT domains in the IM phase within the larger 500 nm sample. PXRD studies under controlled thermal and/or optical excitations have clarified that the reduction of the particle size profoundly affects the structural changes associated with the CTCST. The unusual IM state is also observed as segregated domains in the 135 nm particle, but the collective structural transformations are more hindered in small particles. The volume change decreases to 2%–3%, almost half the value found for 500 nm particles (5%–8%), even though the linear thermal expansion coefficients are larger for the smaller particles. Furthermore, photoexcitation from the IM and LT states does not turn into single phases in the smaller particles, presumably because of the multiple interfaces and/or internal stress generated by the coexistence of small CoII–FeIIIand CoIII–FeIIdomains in the lattice. Since the reduced particle size limits cooperativity and domain growth in the lattice, CTCST in the small particle sample becomes less sensitive to external stimuli.

     
    more » « less