skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A structural study of size-dependent lattice variation: In situ X-ray diffraction of the growth of goethite nanoparticles from 2-line ferrihydrite
Abstract Unlike most native metals, the unit cells of metal oxides tend to expand when crystallite sizes approach the nanoscale. Here we review different models that account for this behavior, and we present structural analyses for goethite (α-FeOOH) crystallites from ~10 to ~30 nm. The goethite was investigated during continuous particle growth via the hydrothermal transformation of 2-line ferrihydrite at pH 13.6 at 80, 90, and 100 °C using time-resolved, angle-dispersive synchrotron X-ray diffraction. Ferrihydrite gels were injected into polyimide capillaries with low background scattering, increasing the sensitivity for detecting diffraction from goethite nanocrystals that nucleated upon heating. Rietveld analysis enabled high-resolution extraction of crystallographic and kinetic data. Crystallite sizes for goethite increased with time at similar rates for all temperatures. With increasing crystallite size, goethite unit-cell volumes decreased, primarily as a result of contraction along the c-axis, the direction of closest-packing (space group Pnma). We introduce the coefficient of nanoscale contraction (CNC) as an analog to the coefficient of thermal expansion (CTE) to compare the dependence of lattice strain on crystallite size for goethite and other metal oxides, and we argue that nanoscale-induced crystallographic expansion is quantitatively similar to that produced when goethite is heated. In addition, our first-order kinetic model based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation yielded an activation energy for the transformation of ferrihydrite to goethite of 72.74 ± 0.2 kJ/mol, below reported values for hematite nucleation and growth.  more » « less
Award ID(s):
1925903
PAR ID:
10164239
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
105
Issue:
5
ISSN:
0003-004X
Page Range / eLocation ID:
652 to 663
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rate and pathway of ferrihydrite (Fh) transformation at oxic conditions to more stable products is controlled largely by temperature, pH, and the presence of other ions in the system such as nitrate (NO3–), sulfate (SO42–), and arsenate (AsO43–). Although the mechanism of Fh transformation and oxyanion complexation have been separately studied, the effect of surface complex type and strength on the rate and pathway remains only partly understood. We have developed a kinetic model that describes the effects of surface complex type and strength on Fh transformation to goethite (Gt) and hematite (Hm). Two sets of oxyanion-adsorbed Fh samples were prepared, nonbuffered and buffered, aged at 70 ± 1.5 °C, and then characterized using synchrotron X-ray scattering methods and wet chemical analysis. Kinetic modeling showed a significant decrease in the rate of Fh transformation for oxyanion surface complexes dominated by strong inner-sphere (SO42– and AsO43–) versus weak outer-sphere (NO3–) bonding and the control. The results also showed that the Fh transformation pathway is influenced by the type of surface complex such that with increasing strength of bonding, a smaller fraction of Gt forms compared with Hm. These findings are important for understanding and predicting the role of Fh in controlling the transport and fate of metal and metalloid oxyanions in natural and applied systems. 
    more » « less
  2. interactions between phosphate and various Fe (oxyhydr)oxides are poorly constrained in natural systems. An in-situ incubation experiment was conducted to explore Fe (oxyhydr)oxide transformation and effects on phosphate sorption in soils with contrasting saturation and redox conditions. Synthetic Fe (oxyhydr)oxides (ferrihydrite, goethite and hematite) were coated onto quartz sand and either pre-sorbed with phosphate or left phosphate-free. The oxide-coated sands were mixed with natural organic matter, enclosed in mesh bags, and buried in and around a vernal pond for up to 12 weeks. Redox conditions were stable and oxic in the upland soils surrounding the vernal pond but largely shifted from Fe reducing to Fe oxidizing in the lowland soils within the vernal pond as it dried during the summer. Iron (oxyhydr)oxides lost more Fe (− 41% ± 10%) and P (− 43 ± 11%) when incubated in the redox-dynamic lowlands compared to the uplands (− 18% ± 5% Fe and − 24 ± 8% P). Averaged across both uplands and lowlands, Fe losses from crystalline goethite and hematite (− 38% ± 6%) were unexpectedly higher than losses from short range ordered ferrihydrite (− 12% ± 10%). We attribute losses of Fe and associated P from goethite and hematite to colloid detachment and dispersion but losses from ferrihydrite to reductive dissolution. Iron losses were partially offset by retention of solubilized Fe as organic-bound Fe(III). Iron (oxyhydr)oxides that persisted during the incubation retained or even gained P, indicating low amounts of phosphate sorption from solution. These results demonstrate that hydrologic variability and Fe (oxyhydr)oxide mineralogy impact Fe mobilization pathways that may regulate phosphate bioavailability. 
    more » « less
  3. Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM steel after nanostructuring by high‐pressure torsion reached crystallite sizes of 23–26 nm, a dislocation density of ≈45 × 1014 m−2and a microstrain of >0.008. A limited amount of deformation‐inducedε‐martensite was observed at a local region in the nanostructured AM steel. The time‐resolved neutron diffraction experiment upon heating successfully visualizes the sequential structural relaxation and linear thermal lattice expansion in the nanostructured AM steel. In practice, by calculating the changes in crystallite sizes, microstrains, and dislocation densities, the relaxation behaviors of the nanocrystalline AM steel is observed: 1) recovery with slow stress relaxation with increasing hardness up to 873 K, 2) recrystallization with accelerated stress relaxation at 873–973 K; and 3) grain growth above 973 K with (iii′) total stress relaxation in lattices up to 1023 K. In addition, this manuscript makes connections between the critical subjects in materials science of advanced manufacturing, metal processing and properties, and novel time‐resolved characterization techniques. 
    more » « less
  4. Abstract We present new results on the conversion of pure, undoped synthetic ferrihydrite, wet‐annealed at pH 6.56 and 90°C without stabilizing ligands, to nanophase goethite, hematite, and an intermediate magnetic phase, nanophase maghemite. Our analyses included magnetic field and temperature‐dependent properties and characterization by powder X‐ray diffraction, Mössbauer spectra, and high‐resolution transmission electron microscopy. We sampled alteration products after 0.5 hr, and then in a geometric progression to 32 hr, yielding a detailed examination of the earliest alteration phases. There are many similarities to the latest studies of pure ferrihydrite alteration but with a significant difference: We observe early appearance of oriented nanophase goethite along with a soft magnetic contribution, while rhombohedral hematite crystals form later, as reported in previous studies. Our observations attest to the non‐uniqueness of the magnetic enhancement process and to its strong dependence on environmental conditions, with important implications for use of the hematite/goethite ratio as a paleoprecipitation proxy. 
    more » « less
  5. null (Ed.)
    Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously. Resonant scattering at the Gd L 2 edge of Gd 3 Fe 5 O 12 layers yields magnetic contrast with both linear and circular incident x-ray polarization. Domain patterns facet to form low-energy domain wall orientations but also are coupled to elastic features linked to epitaxial growth. Nanobeam magnetic diffraction images reveal diverse magnetic microstructure within emerging SSE materials and a strong coupling of the magnetism to crystallographic distortion. 
    more » « less