Long-lived dark states, in which an experimentally accessible qubit is not in thermal equilibrium with a surrounding spin bath, are pervasive in solid-state systems. We explain the ubiquity of dark states in a large class of inhomogeneous central spin models using the proximity to integrable lines with exact dark eigenstates. At numerically accessible sizes, dark states persist as eigenstates at large deviations from integrability, and the qubit retains memory of its initial polarization at long times. Although the eigenstates of the system are chaotic, exhibiting exponential sensitivity to small perturbations, they do not satisfy the eigenstate thermalization hypothesis. Rather,more »
Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as generalized discrete truncated Wigner approximation (GDTWA). It is based on a discrete semi-classical phase space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitrary
- Publication Date:
- NSF-PAR ID:
- 10308369
- Journal Name:
- New Journal of Physics
- Volume:
- 21
- Issue:
- 8
- Page Range or eLocation-ID:
- Article No. 082001
- ISSN:
- 1367-2630
- Publisher:
- IOP Publishing
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way to
quantum liquids with exotic entanglement through two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilizedmore » -
Abstract Designing new quantum materials with long-lived electron spin states urgently requires a general theoretical formalism and computational technique to reliably predict intrinsic spin relaxation times. We present a new, accurate and universal first-principles methodology based on Lindbladian dynamics of density matrices to calculate spin-phonon relaxation time of solids with arbitrary spin mixing and crystal symmetry. This method describes contributions of Elliott-Yafet and D’yakonov-Perel’ mechanisms to spin relaxation for systems with and without inversion symmetry on an equal footing. We show that intrinsic spin and momentum relaxation times both decrease with increasing temperature; however, for the D’yakonov-Perel’ mechanism, spin relaxationmore »
-
Abstract Qudit entanglement is an indispensable resource for quantum information processing since increasing dimensionality provides a pathway to higher capacity and increased noise resilience in quantum communications, and cluster-state quantum computations. In continuous-variable time–frequency entanglement, encoding multiple qubits per photon is only limited by the frequency correlation bandwidth and detection timing jitter. Here, we focus on the discrete-variable time–frequency entanglement in a biphoton frequency comb (BFC), generating by filtering the signal and idler outputs with a fiber Fabry–Pérot cavity with 45.32 GHz free-spectral range (FSR) and 1.56 GHz full-width-at-half-maximum (FWHM) from a continuous-wave (cw)-pumped type-II spontaneous parametric downconverter (SPDC). We generate amore »
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describemore »