skip to main content


Title: Algorithmic Techniques for Necessary and Possible Winners
We investigate the practical aspects of computing the necessary and possible winners in elections over incomplete voter preferences. In the case of the necessary winners, we show how to implement and accelerate the polynomial-time algorithm of Xia and Conitzer. In the case of the possible winners, where the problem is NP-hard, we give a natural reduction to Integer Linear Programming (ILP) for all positional scoring rules and implement it in a leading commercial optimization solver. Further, we devise optimization techniques to minimize the number of ILP executions and, oftentimes, avoid them altogether. We conduct a thorough experimental study that includes the construction of a rich benchmark of election data based on real and synthetic data. Our findings suggest that, the worst-case intractability of the possible winners notwithstanding, the algorithmic techniques presented here scale well and can be used to compute the possible winners in realistic scenarios.  more » « less
Award ID(s):
1916647 1814152
PAR ID:
10308526
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Date Published:
Journal Name:
ACM/IMS Transactions on Data Science
Volume:
2
Issue:
3
ISSN:
2691-1922
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent trends in software-defined networking have extended network programmability to the data plane. Unfortunately, the chance of introducing bugs increases significantly. Verification can help prevent bugs by assuring that the program does not violate its requirements. Although research on the verification of P4 programs is very active, we still need tools to make easier for programmers to express properties and to rapidly verify complex invariants. In this paper, we leverage assertions and symbolic execution to propose a more general P4 verification approach. Developers annotate P4 programs with assertions expressing general network correctness properties; the result is transformed into C models and all possible paths symbolically executed. We implement a prototype, and use it to show the feasibility of the verification approach. Because symbolic execution does not scale well, we investigate a set of techniques to speed up the process for the specific case of P4 programs. We use the prototype implemented to show the gains provided by three speed up techniques (use of constraints, program slicing, parallelization), and experiment with different compiler optimization choices. We show our tool can uncover a broad range of bugs, and can do it in less than a minute considering various P4 applications. 
    more » « less
  2. Advanced Air Mobility (AAM) using electrical vertical take-off and landing (eVTOL) aircraft is an emerging way of air transportation within metropolitan areas. A key challenge for the success of AAM is how to manage large-scale flight operations with safety guarantees in high-density, dynamic, and uncertain airspace environments in real time. To address these challenges, we introduce the concept of a data-driven probabilistic geofence, which can guarantee that the probability of potential conflicts between eVTOL aircraft is bounded under data-driven uncertainties. To evaluate the probabilistic geofences online, Kernel Density Estimation (KDE) based on Fast Fourier Transform (FFT) is customized to model data-driven uncertainties. Based on the FFT-KDE values from data-driven uncertainties, we introduce an optimization framework of Integer Linear Programming (ILP) to find a parallelogram box to approximate the data-driven probabilistic geofence. To overcome the computational burden of ILP, an efficient heuristic algorithm is further developed. Numerical results demonstrate the feasibility and efficiency of the proposed algorithms. 
    more » « less
  3. Network planning is critical to the performance, reliability and cost of web services. This problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's practice relies on hand-tuned heuristics from human experts to address the scalability challenge of ILP solvers. In this paper, we propose NeuroPlan, a deep reinforcement learning (RL) approach to solve the network planning problem. This problem involves multi-step decision making and cost minimization, which can be naturally cast as a deep RL problem. We develop two important domain-specific techniques. First, we use a graph neural network (GNN) and a novel domain-specific node-link transformation for state encoding, in order to handle the dynamic nature of the evolving network topology during planning decision making. Second, we leverage a two-stage hybrid approach that first uses deep RL to prune the search space and then uses an ILP solver to find the optimal solution. This approach resembles today's practice, but avoids human experts with an RL agent in the first stage. Evaluation on real topologies and setups from large production networks demonstrates that NeuroPlan scales to large topologies beyond the capability of ILP solvers, and reduces the cost by up to 17% compared to hand-tuned heuristics. 
    more » « less
  4. To help understand our universe better, researchers and scientists currently run extreme scale cosmology simulations on leadership supercomputers. However, such simulations can generate large amounts of scientific data, which often result in expensive costs in data associated with data movement and storage. Lossy compression techniques have become attractive because they significantly reduce data size and can maintain high data fidelity for post-analysis. In this paper, we propose to use GPU-based lossy compression for extreme scale cosmological simulations. Our contributions are threefold: (1) we implement multiple GPU-based lossy compressors to our opensource compression benchmark and analysis framework named Foresight; (2) we use Foresight to comprehensively evaluate the practicality of using GPU-based lossy compression on two real-world extreme-scale cosmology simulations, namely HACC and Nyx, based on a series of assessment metrics; and (3) we develop a general optimization guideline on how to determine the best-fit configurations for different lossy compressors and cosmological simulations. Experiments show that GPU-based lossy compression can provide necessary accuracy on post-analysis for cosmological simulations and high compression ratio of 5~15x on the tested datasets, as well as much higher compression and decompression throughput than CPU-based compressors. 
    more » « less
  5. We consider the problem of finding the minimal-size factorization of the provenance of self-join-free conjunctive queries, i.e.,we want to find a formula that minimizes the number of variable repetitions. This problem is equivalent to solving the fundamental Boolean formula factorization problem for the restricted setting of the provenance formulas of self-join free queries. While general Boolean formula minimization is Σp2-complete, we show that the problem is NP-Complete in our case. Additionally, we identify a large class of queries that can be solved in PTIME, expanding beyond the previously known tractable cases of read-once formulas and hierarchical queries.

    We describe connections between factorizations, Variable Elimination Orders (VEOs), and minimal query plans. We leverage these insights to create an Integer Linear Program (ILP) that can solve the minimal factorization problem exactly. We also propose a Max-Flow Min-Cut (MFMC) based algorithm that gives an efficient approximate solution. Importantly, we show that both the Linear Programming (LP) relaxation of our ILP, and our MFMC-based algorithm are always correct for all currently known PTIME cases. Thus, we present two unified algorithms (ILP and MFMC) that can both recover all known PTIME cases in PTIME, yet also solve NP-Complete cases either exactly (ILP) or approximately (MFMC), as desired.

     
    more » « less