Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It remains an open question how to determine the winner of an election given incomplete or uncertain voter preferences. One solution is to assume some probability space for the voting profile and declare that the candidates having the best chance of winning are the (co-)winners. We refer to this interpretation as the Most Probable Winner (MPW). In this paper, we focus on elections that use positional scoring rules, and propose an alternative winner interpretation, the Most Expected Winner (MEW), according to the expected performance of the candidates. We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.more » « less
-
It remains an open question how to determine the winner of an election when voter preferences are incomplete or uncertain. One option is to assume some probability space over the voting profile and select the Most Probable Winner (MPW) -- the candidate or candidates with the best chance of winning. In this paper, we propose an alternative winner interpretation, selecting the Most Expected Winner (MEW) according to the expected performance of the candidates.
We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.
-
Abstract Increasingly, laws are being proposed and passed by governments around the world to regulate artificial intelligence (AI) systems implemented into the public and private sectors. Many of these regulations address the transparency of AI systems, and related citizen-aware issues like allowing individuals to have the right to an explanation about how an AI system makes a decision that impacts them. Yet, almost all AI governance documents to date have a significant drawback: they have focused on what to do (or what not to do) with respect to making AI systems transparent, but have left the brunt of the work to technologists to figure out how to build transparent systems. We fill this gap by proposing a stakeholder-first approach that assists technologists in designing transparent, regulatory-compliant systems. We also describe a real-world case study that illustrates how this approach can be used in practice.more » « less
-
The study of fairness in multiwinner elections focuses on settings where candidates have attributes. However, voters may also be divided into predefined populations under one or more attributes. The models that focus on candidate attributes alone may systematically under-represent smaller voter populations. Hence, we develop a model, DiRe Committee Winner Determination (DRCWD), which delineates candidate and voter attributes to select a committee by specifying diversity and representation constraints and a voting rule. We analyze its computational complexity and develop a heuristic algorithm, which finds the winning DiRe committee in under two minutes on 63% of the instances of synthetic datasets and on 100% of instances of real-world datasets. We also present an empirical analysis of feasibility and utility traded-off. Moreover, even when the attributes of candidates and voters coincide, it is important to treat them separately as diversity does not imply representation and vice versa. This is to say that having a female candidate on the committee, for example, is different from having a candidate on the committee who is preferred by the female voters, and who themselves may or may not be female.more » « less
-
We investigate the practical aspects of computing the necessary and possible winners in elections over incomplete voter preferences. In the case of the necessary winners, we show how to implement and accelerate the polynomial-time algorithm of Xia and Conitzer. In the case of the possible winners, where the problem is NP-hard, we give a natural reduction to Integer Linear Programming (ILP) for all positional scoring rules and implement it in a leading commercial optimization solver. Further, we devise optimization techniques to minimize the number of ILP executions and, oftentimes, avoid them altogether. We conduct a thorough experimental study that includes the construction of a rich benchmark of election data based on real and synthetic data. Our findings suggest that, the worst-case intractability of the possible winners notwithstanding, the algorithmic techniques presented here scale well and can be used to compute the possible winners in realistic scenarios.more » « less
-
An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes decisions, is interpretability –– allowing humans to understand, trust and, if necessary, contest, the computational process and its outcomes. These decision-making processes are typically complex: carried out in multiple steps, employing models with many hidden assumptions, and relying on datasets that are often used outside of the original context for which they were intended. In response, humans need to be able to determine the “fitness for use” of a given model or dataset, and to assess the methodology that was used to produce it. To address this need, we propose to develop interpretability and transparency tools based on the concept of a nutritional label, drawing an analogy to the food industry, where simple, standard labels convey information about the ingredients and production processes. Nutritional labels are derived automatically or semi-automatically as part of the complex process that gave rise to the data or model they describe, embodying the paradigm of interpretability-by-design. In this paper we further motivate nutritional labels, describe our instantiation of this paradigm for algorithmic rankers, and give a vision for developing nutritional labels that are appropriate for different contexts and stakeholders.more » « less
-
Many set selection and ranking algorithms have recently been enhanced with diversity constraints that aim to explicitly increase representation of historically disadvantaged populations, or to improve the over-all representativeness of the selected set. An unintended consequence of these constraints, however, is reduced in-group fairness: the selected candidates from a given group may not be the best ones, and this unfairness may not be well-balanced across groups. In this paper we study this phenomenon using datasets that comprise multiple sensitive attributes. We then introduce additional constraints, aimed at balancing the in-group fairness across groups, and formalize the induced optimization problems as integer linear programs. Using these programs, we conduct an experimental evaluation with real datasets, and quantify the feasible trade-offs between balance and overall performance in the presence of diversity constraints.more » « less
-
Items from a database are often ranked based on a combination of criteria. The weight given to each criterion in the combination can greatly affect the ranking produced. Often, a user may have a general sense of the relative importance of the different criteria, but beyond this may have the flexibility, within limits, to choose combinations that weigh these criteria differently with an acceptable region. We demonstrate MithraRanking, a system that helps users choose criterion weights that lead to “better” rankings in terms of having desirable properties while remaining within the acceptable region. The goodness properties we focus on are stability and fairness.more » « less
-
Data science holds incredible promise for improving people's lives, accelerating scientific discovery and innovation, and bringing about positive societal change. Yet, if not used responsibly -- in accordance with legal and ethical norms -- the same technology can reinforce economic and political inequities, destabilize global markets, and reaffirm systemic bias. In this paper I discuss an ongoing regulatory effort in New York City, where the goal is to develop a methodology for enabling responsible use of algorithms and data in city agencies. I then highlight some ongoing work that makes part of the Data, Responsibly project, aiming to operationalize fairness, diversity, accountability, transparency, and data protection at all stages of the data science lifecycle. Additional information about the project, including technical papers, teaching materials, and open-source tools, is available at dataresponsibly.github.io.more » « less