INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implementedmore »
High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome
Abstract Background The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. Findings Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a more »
- Award ID(s):
- 1744309
- Publication Date:
- NSF-PAR ID:
- 10308628
- Journal Name:
- GigaScience
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2047-217X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hares (genus Lepus) provide clear examples of repeated and often massive introgressive hybridization and striking local adaptations. Genomic studies on this group have so far relied on comparisons to the European rabbit (Oryctolagus cuniculus) reference genome. Here, we report the first de novo draft reference genome for a hare species, the mountain hare (Lepus timidus), and evaluate the efficacy of whole-genome re-sequencing analyses using the new reference versus using the rabbit reference genome. The genome was assembled using the ALLPATHS-LG protocol with a combination of overlapping pair and mate-pair Illumina sequencing (77x coverage). The assembly contained 32,294 scaffolds with a total length of 2.7 Gb and a scaffold N50 of 3.4 Mb. Re-scaffolding based on the rabbit reference reduced the total number of scaffolds to 4,205 with a scaffold N50 of 194 Mb. A correspondence was found between 22 of these hare scaffolds and the rabbit chromosomes, based on gene content and direct alignment. We annotated 24,578 protein coding genes by combining ab-initio predictions, homology search, and transcriptome data, of which 683 were solely derived from hare-specific transcriptome data. The hare reference genome is therefore a new resource to discover and investigate hare-specific variation. Similar estimates of heterozygosity and inferred demographic historymore »
-
Legumes are of great interest for sustainable agricultural production as they fix atmospheric nitrogen to improve the soil. Medicago truncatula is a well-established model legume, and extensive studies in fundamental molecular, physiological, and developmental biology have been undertaken to translate into trait improvements in economically important legume crops worldwide. However, M. truncatula reference genome was generated in the accession Jemalong A17, which is highly recalcitrant to transformation. M. truncatula R108 is more attractive for genetic studies due to its high transformation efficiency and Tnt1-insertion population resource for functional genomics. The need to perform accurate synteny analysis and comprehensive genome-scale comparisons necessitates a chromosome-length genome assembly for M. truncatula cv. R108. Here, we performed in situ Hi-C (48×) to anchor, order, orient scaffolds, and correct misjoins of contigs in a previously published genome assembly (R108 v1.0), resulting in an improved genome assembly containing eight chromosome-length scaffolds that span 97.62% of the sequenced bases in the input assembly. The long-range physical information data generated using Hi-C allowed us to obtain a chromosome-length ordering of the genome assembly, better validate previous draft misjoins, and provide further insights accurately predicting synteny between A17 and R108 regions corresponding to the known chromosome 4/8 translocation. Furthermore,more »
-
INTRODUCTION To faithfully distribute genetic material to daughter cells during cell division, spindle fibers must couple to DNA by means of a structure called the kinetochore, which assembles at each chromosome’s centromere. Human centromeres are located within large arrays of tandemly repeated DNA sequences known as alpha satellite (αSat), which often span millions of base pairs on each chromosome. Arrays of αSat are frequently surrounded by other types of tandem satellite repeats, which have poorly understood functions, along with nonrepetitive sequences, including transcribed genes. Previous genome sequencing efforts have been unable to generate complete assemblies of satellite-rich regions because of their scale and repetitive nature, limiting the ability to study their organization, variation, and function. RATIONALE Pericentromeric and centromeric (peri/centromeric) satellite DNA sequences have remained almost entirely missing from the assembled human reference genome for the past 20 years. Using a complete, telomere-to-telomere (T2T) assembly of a human genome, we developed and deployed tailored computational approaches to reveal the organization and evolutionary patterns of these satellite arrays at both large and small length scales. We also performed experiments to map precisely which αSat repeats interact with kinetochore proteins. Last, we compared peri/centromeric regions among multiple individuals to understand how thesemore »
-
Abstract The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society 1,2 . However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals 3,4 . Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome 5 . To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity 6 . Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent–child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genesmore »