skip to main content

Title: The effect of nonlinear drag on the rise velocity of bubbles in turbulence
We investigate how turbulence in liquid affects the rising speed of gas bubbles within the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising through water turbulence created by the convergence of turbulent jets and characterized with particle image velocimetry performed throughout the measurement volume. We use the spatially varying, time-averaged mean water velocity field to consider the physically relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes within the inertial range, we find that the bubble mean rise velocity $\left \langle v_z \right \rangle$ decreases with the intensity of the turbulence as characterized by its root-mean-square fluctuation velocity, $u'$ . Non-dimensionalized by the quiescent rise velocity $v_{q}$ , the average rise speed follows $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ at high ${\textit {Fr}}$ , where ${\textit {Fr}}=u'/\sqrt {dg}$ is a Froude number comparing the intensity of the turbulence to the bubble buoyancy, with $d$ the bubble diameter and $g$ the acceleration due to gravity. We complement these results by performing numerical integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in three-dimensional, homogeneous and isotropic turbulence. These simulations reproduce the slowdown observed experimentally, and show that the mean magnitude of the slip velocity is proportional to the large-scale fluctuations of the flow velocity. Combining the numerical estimate of the slip velocity magnitude with a simple theoretical model, we show that the scaling $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ originates from a combination of the nonlinear drag and the nearly isotropic behaviour of the slip velocity at large ${\textit {Fr}}$ that drastically reduces the mean rise speed.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally investigate the rise velocity of finite-sized bubbles in turbulence with a high energy dissipation rate of $\unicode[STIX]{x1D716}\gtrsim 0.5~\text{m}^{2}~\text{s}^{-3}$ . In contrast to a 30–40 % reduction in rise velocity previously reported in weak turbulence (the Weber number ( $We$ ) is much smaller than the Eötvös number ( $Eo$ ); $We\ll 1 more » « less
  2. We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient $k_L$ can be described by the classic Levich formula $k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$ , with $d(t)$ and $U(t)$ the time-varying bubble size and rise velocity, and $\mathscr {D}_l$ the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiya et al. ( J. Fluid Mech. , vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence $k_L$ is controlled by the smallest scales of the flow, the Kolmogorov $\eta$ and Batchelor $\eta _B$ microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate ${Sh}=k_L L^\star /\mathscr {D}_l$ scaling as ${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$ , where ${Re}$ is the macroscale Reynolds number ${Re} = u_{rms}L^\star /\nu _l$ , with $u_{rms}$ the velocity fluctuations, $L^*$ the integral length scale, $\nu _l$ the liquid viscosity, and ${Sc}=\nu _l/\mathscr {D}_l$ the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate $\epsilon$ as ${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$ , in agreement with the model proposed by Lamont & Scott ( AIChE J. , vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high $Re$ regime from Theofanous et al. ( Intl J. Heat Mass Transfer , vol. 19, issue 6, 1976, pp. 613–624). 
    more » « less
  3. Abstract

    White dwarf photospheric parameters are usually obtained by means of spectroscopic or photometric analysis. These results are not always consistent with each other, with the published values often including just the statistical uncertainties. The differences are more dramatic for white dwarfs with helium-dominated photospheres, so to obtain realistic uncertainties we have analysed a sample of 13 of these white dwarfs, applying both techniques to up to three different spectroscopic and photometric data sets for each star. We found mean standard deviations of $\left\langle \sigma {T_{\mathrm{eff}}}\right\rangle = 524$ K, $\left\langle \sigma {\log g}\right\rangle = 0.27$ dex and $\left\langle \sigma {\log (\mathrm{H/He})}\right\rangle = 0.31$ dex for the effective temperature, surface gravity, and relative hydrogen abundance, respectively, when modelling diverse spectroscopic data. The photometric fits provided mean standard deviations up to $\left\langle \sigma {T_{\mathrm{eff}}}\right\rangle = 1210$ K and $\left\langle \sigma {\log g}\right\rangle = 0.13$ dex. We suggest these values to be adopted as realistic lower limits to the published uncertainties in parameters derived from spectroscopic and photometric fits for white dwarfs with similar characteristics. In addition, we investigate the effect of fitting the observational data adopting three different photospheric chemical compositions. In general, pure helium model spectra result in larger Teff compared to those derived from models with traces of hydrogen. The log g shows opposite trends: smaller spectroscopic values and larger photometric ones when compared to models with hydrogen. The addition of metals to the models also affects the derived atmospheric parameters, but a clear trend is not found.

    more » « less
  4. null (Ed.)
    We present simultaneous three-dimensional measurements of deformable finite-sized bubbles and surrounding turbulent flows. The orientations of bubbles are linked to two key mechanisms that drive bubble deformation: the turbulent strain rate and slip velocity between the two phases. The strongest preferential alignment is between the bubbles and slip velocity, indicating the latter plays a dominant role. We also compared our experimental results with the deformation of ideal material elements with no slip velocity or surface tension. Without these, material elements show highly different orientations, further confirming the importance of the slip velocity in the bubble orientation. In addition to deformation, when bubbles begin to break, their relative orientations change significantly. Although the alignment of the severely deformed bubbles with the eigenvectors of the turbulent strain rate becomes much stronger, the bubble semi-major axis becomes aligned with (rather than perpendicular to) the slip velocity through an almost $90^{\circ }$ turn. This puzzling orientation change occurs because the slip velocity contains the contributions from both the bubble and the background flow. As the bubble experiences strong deformation, the rapid elongation of its semi-major axis leads to a large bubble velocity, which dominates the slip velocity and forces its alignment with the bubble's semi-major axis. The slip velocity thereby switches from a driving mechanism to a driven result as bubbles approach breakup. The results highlight the complex coupling between the bubble orientation and the surrounding flow, which should be included when modelling the bubble deformation and breakup in turbulence. 
    more » « less
  5. null (Ed.)
    We experimentally investigate the breakup mechanisms and probability of Hinze-scale bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the critical mean Weber number, across which the bubble breakup probability was believed to have an abrupt transition from being dominated by turbulence stresses to being suppressed completely by the surface tension. In this work, to quantify the breakup probability of bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms, both bubbles and their surrounding tracer particles were simultaneously tracked. From the experimental results, two Weber numbers, one calculated from the slip velocity between the two phases and the other acquired from local velocity gradients, are separated and fitted with models that can be linked back to turbulence characteristics. Moreover, we also provide an empirical model to link bubble deformation to the two Weber numbers by extending the relationship obtained from potential flow theory. The proposed relationship between bubble aspect ratio and the Weber numbers seems to work consistently well for a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two Weber numbers are connected using the linear forced oscillator model. Finally, having access to the distributions of these two Weber numbers provides a unique way to extract the breakup probability of bubbles with sizes close to the Hinze scale. 
    more » « less