We describe the rising trajectory of bubbles in isotropic turbulence and quantify the slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We perform direct numerical simulations of bubbles, for a wide range of turbulence intensity, bubble inertia and deformability, with systematic comparison with the corresponding quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity$$\tilde {w}_b$$compared with the rise velocity in quiescent flow$$w_b$$. The decrease in mean rise velocity of bubbles$$\tilde {w}_b/w_b$$is shown to be primarily a function of the ratio of the turbulence intensity and the buoyancy forces, described by the Froude number$$Fr=u'/\sqrt {gd}$$, where$$u'$$is the root-mean-square velocity fluctuations,$$g$$is gravity and$$d$$is the bubble diameter. The bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number), and the bubble deformability, characterised by the ratio of buoyancy forces to surface tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity relationship, where velocity fluctuations lead to an increased average drag. For$$Fr > 0.5$$, we confirm the scaling$$\tilde {w}_b / w_b \propto 1 / Fr$$, as proposed previously by Ruthet al.(J. Fluid Mech., vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability.
more »
« less
The effect of nonlinear drag on the rise velocity of bubbles in turbulence
We investigate how turbulence in liquid affects the rising speed of gas bubbles within the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising through water turbulence created by the convergence of turbulent jets and characterized with particle image velocimetry performed throughout the measurement volume. We use the spatially varying, time-averaged mean water velocity field to consider the physically relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes within the inertial range, we find that the bubble mean rise velocity $$\left \langle v_z \right \rangle$$ decreases with the intensity of the turbulence as characterized by its root-mean-square fluctuation velocity, $u'$ . Non-dimensionalized by the quiescent rise velocity $$v_{q}$$ , the average rise speed follows $$\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$$ at high $${\textit {Fr}}$$ , where $${\textit {Fr}}=u'/\sqrt {dg}$$ is a Froude number comparing the intensity of the turbulence to the bubble buoyancy, with $$d$$ the bubble diameter and $$g$$ the acceleration due to gravity. We complement these results by performing numerical integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in three-dimensional, homogeneous and isotropic turbulence. These simulations reproduce the slowdown observed experimentally, and show that the mean magnitude of the slip velocity is proportional to the large-scale fluctuations of the flow velocity. Combining the numerical estimate of the slip velocity magnitude with a simple theoretical model, we show that the scaling $$\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$$ originates from a combination of the nonlinear drag and the nearly isotropic behaviour of the slip velocity at large $${\textit {Fr}}$$ that drastically reduces the mean rise speed.
more »
« less
- Award ID(s):
- 1844932
- PAR ID:
- 10308644
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 924
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient $$k_L$$ can be described by the classic Levich formula $$k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$$ , with $d(t)$ and $U(t)$ the time-varying bubble size and rise velocity, and $$\mathscr {D}_l$$ the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiya et al. ( J. Fluid Mech. , vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence $$k_L$$ is controlled by the smallest scales of the flow, the Kolmogorov $$\eta$$ and Batchelor $$\eta _B$$ microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate $${Sh}=k_L L^\star /\mathscr {D}_l$$ scaling as $${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$$ , where $${Re}$$ is the macroscale Reynolds number $${Re} = u_{rms}L^\star /\nu _l$$ , with $$u_{rms}$$ the velocity fluctuations, $L^*$ the integral length scale, $$\nu _l$$ the liquid viscosity, and $${Sc}=\nu _l/\mathscr {D}_l$$ the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate $$\epsilon$$ as $${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$$ , in agreement with the model proposed by Lamont & Scott ( AIChE J. , vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high $Re$ regime from Theofanous et al. ( Intl J. Heat Mass Transfer , vol. 19, issue 6, 1976, pp. 613–624).more » « less
-
We experimentally investigate the rise velocity of finite-sized bubbles in turbulence with a high energy dissipation rate of $$\unicode[STIX]{x1D716}\gtrsim 0.5~\text{m}^{2}~\text{s}^{-3}$$ . In contrast to a 30–40 % reduction in rise velocity previously reported in weak turbulence (the Weber number ( $We$ ) is much smaller than the Eötvös number ( $Eo$ ); $$We\ll 1more » « less
-
null (Ed.)We present simultaneous three-dimensional measurements of deformable finite-sized bubbles and surrounding turbulent flows. The orientations of bubbles are linked to two key mechanisms that drive bubble deformation: the turbulent strain rate and slip velocity between the two phases. The strongest preferential alignment is between the bubbles and slip velocity, indicating the latter plays a dominant role. We also compared our experimental results with the deformation of ideal material elements with no slip velocity or surface tension. Without these, material elements show highly different orientations, further confirming the importance of the slip velocity in the bubble orientation. In addition to deformation, when bubbles begin to break, their relative orientations change significantly. Although the alignment of the severely deformed bubbles with the eigenvectors of the turbulent strain rate becomes much stronger, the bubble semi-major axis becomes aligned with (rather than perpendicular to) the slip velocity through an almost $$90^{\circ }$$ turn. This puzzling orientation change occurs because the slip velocity contains the contributions from both the bubble and the background flow. As the bubble experiences strong deformation, the rapid elongation of its semi-major axis leads to a large bubble velocity, which dominates the slip velocity and forces its alignment with the bubble's semi-major axis. The slip velocity thereby switches from a driving mechanism to a driven result as bubbles approach breakup. The results highlight the complex coupling between the bubble orientation and the surrounding flow, which should be included when modelling the bubble deformation and breakup in turbulence.more » « less
-
null (Ed.)We experimentally investigate the breakup mechanisms and probability of Hinze-scale bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the critical mean Weber number, across which the bubble breakup probability was believed to have an abrupt transition from being dominated by turbulence stresses to being suppressed completely by the surface tension. In this work, to quantify the breakup probability of bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms, both bubbles and their surrounding tracer particles were simultaneously tracked. From the experimental results, two Weber numbers, one calculated from the slip velocity between the two phases and the other acquired from local velocity gradients, are separated and fitted with models that can be linked back to turbulence characteristics. Moreover, we also provide an empirical model to link bubble deformation to the two Weber numbers by extending the relationship obtained from potential flow theory. The proposed relationship between bubble aspect ratio and the Weber numbers seems to work consistently well for a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two Weber numbers are connected using the linear forced oscillator model. Finally, having access to the distributions of these two Weber numbers provides a unique way to extract the breakup probability of bubbles with sizes close to the Hinze scale.more » « less
An official website of the United States government

