We experimentally investigate the breakup mechanisms and probability of Hinzescale bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the critical mean Weber number, across which the bubble breakup probability was believed to have an abrupt transition from being dominated by turbulence stresses to being suppressed completely by the surface tension. In this work, to quantify the breakup probability of bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms, both bubbles and their surrounding tracer particles were simultaneously tracked. From the experimental results, two Weber numbers, one calculated from the slip velocity between the two phases and the other acquired from local velocity gradients, are separated and fitted with models that can be linked back to turbulence characteristics. Moreover, we also provide an empirical model to link bubble deformation to the two Weber numbers by extending the relationship obtained from potential flow theory. The proposed relationship between bubble aspect ratio and the Weber numbers seems to work consistently well for a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two Weber numbers are connected using the linear forced oscillator model. Finally, having accessmore »
Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity
We experimentally investigate the rise velocity of finitesized bubbles in turbulence with a high energy dissipation rate of $\unicode[STIX]{x1D716}\gtrsim 0.5~\text{m}^{2}~\text{s}^{3}$ . In contrast to a 30–40 % reduction in rise velocity previously reported in weak turbulence (the Weber number ( $We$ ) is much smaller than the Eötvös number ( $Eo$ ); $We\ll 1
 Publication Date:
 NSFPAR ID:
 10157358
 Journal Name:
 Journal of Fluid Mechanics
 Volume:
 894
 ISSN:
 00221120
 Sponsoring Org:
 National Science Foundation
More Like this


We investigate how turbulence in liquid affects the rising speed of gas bubbles within the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising through water turbulence created by the convergence of turbulent jets and characterized with particle image velocimetry performed throughout the measurement volume. We use the spatially varying, timeaveraged mean water velocity field to consider the physically relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes within the inertial range, we find that the bubble mean rise velocity $\left \langle v_z \right \rangle$ decreases with the intensity of the turbulence as characterized by its rootmeansquare fluctuation velocity, $u'$ . Nondimensionalized by the quiescent rise velocity $v_{q}$ , the average rise speed follows $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ at high ${\textit {Fr}}$ , where ${\textit {Fr}}=u'/\sqrt {dg}$ is a Froude number comparing the intensity of the turbulence to the bubble buoyancy, with $d$ the bubble diameter and $g$ the acceleration due to gravity. We complement these results by performing numerical integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in threedimensional, homogeneous and isotropic turbulence. These simulations reproduce the slowdown observed experimentally, and show that themore »

A phenomenological model is proposed to describe the deformation and orientation dynamics of finitesized bubbles in both quiescent and turbulent aqueous media. This model extends and generalizes a previous work that is limited to only the viscous deformation of neutrally buoyant droplets, conducted by Maffettone & Minale ( J. NonNewtonian Fluid Mech. , vol. 78, 1998, pp. 227–241), into a high Reynolds number regime where the bubble deformation is dominated by flow inertia. By deliberately dividing flow inertia into contributions from the slip velocity and velocity gradients, a new formulation for bubble deformation is constructed and validated against two experiments designed to capture the deformation and orientation dynamics of bubbles simultaneously with two types of surrounding flows. The relative importance of each deformation mechanism is measured by its respective dimensionless coefficient, which can be isolated and evaluated independently through several experimental constraints without multivariable fitting, and the results agree with the model predictions well. The acquired coefficients imply that bubbles reorient through body rotation as they rise in water at rest but through deformation along a different direction in turbulence. Finally, we provide suggestions on how to implement the proposed framework for characterizing the dynamics of deformable bubbles/drops in simulations.

The dynamics of air bubbles in turbulent Rayleigh–Bénard (RB) convection is described for the first time using laboratory experiments and complementary numerical simulations. We performed experiments at $Ra=5.5\times 10^{9}$ and $1.1\times 10^{10}$ , where streams of 1 mm bubbles were released at various locations from the bottom of the tank along the path of the roll structure. Using threedimensional particle tracking velocimetry, we simultaneously tracked a large number of bubbles to inspect the pair dispersion, $R^{2}(t)$ , for a range of initial separations, $r$ , spanning one order of magnitude, namely $25\unicode[STIX]{x1D702}\leqslant r\leqslant 225\unicode[STIX]{x1D702}$ ; here $\unicode[STIX]{x1D702}$ is the local Kolmogorov length scale. Pair dispersion, $R^{2}(t)$ , of the bubbles within a quiescent medium was also determined to assess the effect of inhomogeneity and anisotropy induced by the RB convection. Results show that $R^{2}(t)$ underwent a transition phase similar to the ballistictodiffusive ( $t^{2}$ to $t^{1}$ ) regime in the vicinity of the cell centre; it approached a bulk behavior $t^{3/2}$ in the diffusive regime as the distance away from the cell centre increased. At small $r$ , $R^{2}(t)\propto t^{1}$ is shown in the diffusive regime with a lower magnitude compared to the quiescent case, indicating that the convective turbulence reducedmore »

The dynamics of air bubbles in turbulent Rayleigh–Bénard (RB) convection is described for the first time using laboratory experiments and complementary numerical simulations. We performed experiments at Ra =5.5x10^9 and 1.1x 10^10, where streams of 1 mm bubbles were released at various locations from the bottom of the tank along the path of the roll structure. Using threedimensional particle tracking velocimetry, we simultaneously tracked a large number of bubbles to inspect the pair dispersion, R2(t), for a range of initial separations, r, spanning one order of magnitude, namely 25η < r < 225η; here η is the local Kolmogorov length scale. Pair dispersion, R2(t), of the bubbles within a quiescent medium was also determined to assess the effect of inhomogeneity and anisotropy induced by the RB convection. Results show that R2(t) underwent a transition phase similar to the ballistictodiffusive (t^2tot^1) regime in the vicinity of the cell centre; it approached a bulk behavior t3/2 in the diffusive regime as the distance away from the cell centre increased. At small r, R2(t) ~ t^1 is shown in the diffusive regime with a lower magnitude compared to the quiescent case, indicating that the convective turbulence reduced the amplitude of the bubble’s fluctuations.more »